Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Deliang Lu; Lauren S. Pile; Dapao Yu; Jiaojun Zhu; Don C. Bragg; G. Geoff. Wang
    Date: 2020
    Source: Forest Ecology and Management
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (2.0 MB)


    The unique terrain, geography, and climate patterns of the eastern United States encourage periodic occurrences of catastrophic ice storms capable of large-scale damage or destruction of forests. However, the pervasive and persistent effects of these glaze events on regional forest distribution and composition have rarely been studied. In the southeastern US, ice storm frequency and intensity increase with increasing latitude and along the complex gradients from the coast (low, flat, sediment controlled and temperature moderated near the ocean) to the interior (high, rugged, bedrock controlled, distant from warming ocean). To investigate the potential influence of this disturbance gradient on regional forest composition, we studied the differential responses of trees (canopy position, lifeform group, and species group) to a particularly severe ice storm. Our results indicated that tree mortality and damage (canopy damage, bent bole, snapped bole, and uprooted) varied significantly between overstory and understory trees, and among species and lifeform groups. Overstory trees were more prone to glaze damage than understory trees, and evergreen broadleaf species were the most susceptible to glaze damage, while deciduous species were the least susceptible. Among the pine species studied, slash pine (Pinus elliottii Engelm.) and longleaf pine (P. palustris Mill.) suffered more severe damage and mortality than loblolly pine (P. taeda L.). Further, ice damage was correlated with distribution-based differences in injury susceptibility among pine and deciduous tree species. The most ice storm-tolerant pine species, loblolly pine, had the most northerly distribution (39.51°N), while the least resistant species were those with more southerly distribution (e.g., 33.29°N for slash pine). These results support hypotheses that the distributions of evergreen tree species are regulated by periodic catastrophic ice storms. Therefore, predicting future distributions of tree species in response to climate change should consider the role of ice storms in shaping the forest composition.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Lu, Deliang; Pile, Lauren S.; Yu, Dapao; Zhu, Jiaojun; Bragg, Don C.; Wang, G. Geoff. 2020. Differential responses of tree species to a severe ice storm and their implications to forest composition in the southeast United States. Forest Ecology and Management. 468: 118177. 12 p.


    Google Scholar


    Glaze event, Natural disturbance, Lifeform group, Tree damage, Species distribution

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page