Skip to main content
U.S. flag

An official website of the United States government

Towards spatially explicit quantification of pre- and postfire fuels and fuel consumption from traditional and point cloud measurements

Author(s):

Akira Kato
Gabriel A. Prata
Carlos Cabo
Susan J. Prichard
Eric M. Rowell

Year:

2020

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station

Source:

Forest Science. 68(4): 428-442.

Description

Methods to accurately estimate spatially explicit fuel consumption are needed because consumption relates directly to fire behavior, effects, and smoke emissions. Our objective was to quantify sparkleberry (Vaccinium arboretum Marshall) shrub fuels before and after six experimental prescribed fires at Fort Jackson in South Carolina. We used a novel approach to characterize shrubs non-destructively from three-dimensional (3D) point cloud data collected with a terrestrial laser scanner. The point cloud data were reduced to 0.001 m-3 voxels that were either occupied to indicate fuel presence or empty to indicate fuel absence. The density of occupied voxels was related significantly by a logarithmic function to 3D fuel bulk density samples that were destructively harvested (adjusted R2 = .32, P < .0001). Based on our findings, a survey-grade Global Navigation Satellite System may be necessary to accurately associate 3D point cloud data to 3D fuel bulk density measurements destructively collected in small (submeter) shrub plots. A recommendation for future research is to accurately geolocate and quantify the occupied volume of entire shrubs as 3D objects that can be used to train models to map shrub fuel bulk density from point cloud data binned to occupied 3D voxels.

Citation

Hudak, Andrew T.; Kato, Akira; Bright, Benjamin C.; Loudermilk, E. Louise; Hawley, Christie; Restaino, Joseph C.; Ottmar, Roger D.; Prata, Gabriel A.; Cabo, Carlos; Prichard, Susan J.; Rowell, Eric M.; Weise, David R. 2020. Towards spatially explicit quantification of pre- and postfire fuels and fuel consumption from traditional and point cloud measurements. Forest Science. 68(4): 428-442.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/60054