Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): C. D. Barton; A. D. Karathanasis
    Date: 2003
    Source: Water, Air, and Soil Pollution
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (159.0 KB)

    Description

    The role of soil colloids and their potential to co-transport agrochemicals in subsurface soil environments was evaluated in aleaching experiment utilizing large soil monoliths. The monolithswere created by hydraulically driving steel pipe sections (50 cm diameter × 50 cm length) into Maury silt loam (fine, mixed, mesic Typic Paleudalf) and Loradale silt loam (fine, silty, mixed mesic Typic Argiudoll) soils. Water dispersible colloids fractionated from the Bt horizons of the above soilswere spiked with 3 mg L-1 atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-triazine) and 10 mg L-1 zinc (Zn), and after a twenty-four hour equilibration were applied into the monoliths at eight hour intervals using 500 mL pulse applications. Solutions containing atrazine and Znwithout added colloids were applied to separate monoliths from each soil to represent control treatments. Colloid, atrazine, andZn recoveries in the eluent varied greatly with respect to soiltype. Colloid recovery in the Loradale monoliths averaged 65.1 ± 26.5%, with maxima approaching the input level, while in the Maury monoliths the average recovery was low (5.7 ± 6.2%) and never exceeded 25% of the input level. Atrazine eluted from the two monoliths averaged 40.3 ± 12.5% (Loradale) and 29.0 ± 20.0% (Maury), with considerable enhancement in the presence of colloids, especially in the Loradale soil. In contrast, the elution of Zn averaged 3.0 ±3.2%, in the Loradale monoliths and rarely exceeded control concentrations in the Maury monoliths, suggesting a stronger retardation of Zn over atrazine within the soil matrix, especially when colloid transport was deterred. Settling-rateexperiments at varying pH and electrical conductivity (EC) valuessuggested that the transport of Maury colloids may have been hindered due to flocculation within the monoliths, while the Loradale colloids remained stable throughout the leaching experiment. Although the presence of colloids enhanced atrazineelution in all monoliths, the actual amount of atrazine transported bound to either colloid type was minimal, suggestingmainly physical exclusion transport processes. In contrast, stronger chemisorption of Zn to colloid surfaces than the soil matrix appeared to enhance the transport of Zn by both colloids.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Barton, C. D.; Karathanasis, A. D. 2003. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths. Water, Air, and Soil Pollution. 143: 3-21.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60110