Skip to main content
U.S. flag

An official website of the United States government

Western larch regeneration responds more strongly to site and indirect climate factors than to direct climate factors



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station


Forests. 11: 482.


Substantial shifts in the distribution of western larch (Larix occidentalis Nutt.) are predicted during the coming decades in response to changing climatic conditions. However, it is unclear how the interplay between direct climate effects, such as warmer, drier conditions, and indirect climate effects, such as predicted increases in fire disturbance, will impact fire-adapted species such as western larch. The objectives of this study were (1) to compare the relative importance of stand, site, and indirect versus direct climatic factors in determining western larch seedling recruitment; (2) to determine whether seedling recruitment rates have changed in recent years in response to disturbance, post-fire weather, and/or climate; and (3) to determine whether seedlings and mature trees are experiencing niche differentiation based on recent climatic shifts. We addressed these objectives using data collected from 1286 national forest inventory plots in the US states of Idaho and Montana. We used statistical models to determine the relative importance of 35 stand, site, and climatic factors for larch seedling recruitment. Our results suggest that the most important predictors of larch seedling recruitment were indicative of early-seral stand conditions, and were often associated with recent fire disturbance and cutting. Despite indications of climatic niche compression, seedling recruitment rates have increased in recent decades, likely due to increased fire disturbance, and were unrelated to post-fire weather. Compared to sites occupied by mature trees, seedling recruitment was positively associated with cooler, drier climatic conditions, and particularly with cooler summer temperatures, but these climatic factors were generally less important than biotic stand variables such as stand age, basal area, and canopy cover. These results suggest that, for fire-dependent species such as western larch, increased heat and drought stress resulting from climatic change may be o set, at least in the near term, by an increase in early-seral stand conditions resulting from increased fire disturbance, although localized range contraction may occur at warm, dry extremes.


Steed, James E.; Goeking, Sara A. 2020. Western larch regeneration responds more strongly to site and indirect climate factors than to direct climate factors. Forests. 11: 482.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.