Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Shiyuan Zhong; Lejiang Yu; Warren E. HeilmanXindi Bian; Hannah Fromm
    Date: 2020
    Source: Theoretical and Applied Climatology
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (9.0 MB)

    Description

    Wildfire regimes respond to atmospheric variability on multiple time scales from interannual variations of drought to daily fluctuations of humidity and wind. Synoptic weather patterns effectively link both short- and long-term atmospheric variability, and thus, understanding fire-prone synoptic patterns is an integral part of fire management programs. Different analysis procedures of varying complexity have been used to identify the most common synoptic weather patterns conducive to wildfires. In this study, we examine the utility of three synoptic-pattern classification methodologies, namely Composite, Empirical Orthogonal Function (EOF), and Self Organizing Map (SOM). We focused on the synoptic weather patterns associated with 203 wildfires that burned 50,000 acres (20,250 ha) ormore and 80 wildfires that burned 100,000 acres (40,500 ha) or more in the Northwestern United States between 1984 and 2014. The basic 500-hPa geopotential height patterns identified by the three analysis methods were found to be similar for the two fire-size categories, but the strengths of the geopotential height anomalies were larger for the larger size fires. All three methods were able to consistently identify the dominant pattern with only small differences in strength and position of the anomalies, but the EOF and SOM methods yielded other less dominant, but still important, patterns. Particularly, the SOM method captured transitional synoptic patterns that may account for 20–30% of these large wildfires.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Zhong, Shiyuan; Yu, Lejiang; Heilman, Warren E.; Bian, Xindi; Fromm, Hannah. 2020. Synoptic weather patterns for large wildfires in the northwestern United States—a climatological analysis using three classification methods. Theoretical and Applied Climatology. 141(3-4): 1057-1073. https://doi.org/10.1007/s00704-020-03235-y.

    Cited

    Google Scholar

    Keywords

    Fire weather, Wildfires, Synoptic patterns, Weather typing

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60260