Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Maokui Lyu; Yangyi Nie; Christian P. Giardina; Matthew A. Vadeboncoeur; Yinbang Ren; Zuoqin Fu; Minhuang Wang; Changshan Jin; Xiuming Liu; Jinsheng Xie
    Date: 2019
    Source: Functional Ecology
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    1. Forest litter inputs to soil can stimulate the decomposition of older soil organic matter (SOM) via a priming effect (PE). The magnitude and underlying mechanisms driving PE are poorly understood, with especially little know about how litter quality and site conditions affect PE in situ. Further, very few studies have examined PE in tropical and subtropical soils.

    2. Here, we established low and high elevation sites (600 vs. 1,400 m a.s.l.) in the subtropical Wuyishan National Park, China, that differed with respect to mean annual temperature (MAT; ∆MAT = 4.2°C), vegetation, soil texture and soil moisture. We conducted a 1‐year field incubation study at these two sites to compare PE induced by adding low‐ and high‐quality 13C‐labelled leaf litter to soils.

    3. At the low elevation site, additions of high‐quality (low C/N) litter caused a PE that was 140% greater than the PE observed following additions of low‐quality (high C/N) litter. In contrast, we saw no significant differences in PE between litter types at the high elevation site, perhaps because PE was not limited by substrate quality at this cooler, finer textured and higher soil moisture coniferous site. In addition, we found a negative relationship between home‐field advantage (HFA) for litter decomposition and PE, indicating that specialized litter decomposer community driving HFA may not accelerate SOM decomposition via PE in the same way.

    4. In line with our observed strong relationship between PE and the efficiency of priming (PE size per unit of mineralized litter C), PEs induced by the high‐ and low‐quality litters were directed to microbial phosphorus (P) mining rather than nitrogen (N) mining. This interpretation aligns with observed increases in the activity of P acquiring extracellular enzymes, often described as phosphatases (P‐tases), as well as the positive relationship between the PE, P‐tase activity and the activity of C acquiring extracellular enzymes.

    5. Overall, this PE study across two contrasting sites highlights the important role of site characteristics and litter quality in regulating PE size. Further, we suggest that MAT may be a dominant driver of soil priming, through both the direct effects of litter quantity on labile substrate supply and the indirect effects of litter quality changes on downstream decomposer communities.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lyu, Maokui; Nie, Yangyi; Giardina, Christian P.; Vadeboncoeur, Matthew A.; Ren, Yinbang; Fu, Zuoqin; Wang, Minhuang; Jin, Changshan; Liu, Xiuming; Xie, Jinsheng. 2019. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests. Functional Ecology. 33(11): 2226-2238. https://doi.org/10.1111/1365-2435.13428.

    Cited

    Google Scholar

    Keywords

    home‐field advantage, litter quality, nutrient mining, priming effects, subtropical montane forests

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60266