Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Warren B. CohenZhiqiang Yang; Stephen V Stehman; Todd A. SchroederDavid M. Bell; Jeffrey G. Masek; Chengquan Huang; Garrett W. Meigs
    Date: 2016
    Source: Forest Ecology and Management. 360: 242-252.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (1.0 MB)

    Related Research Highlights

    Mapping Causes of Disturbance in U.S. Forests


    Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline-related disturbance rates reached as high as 8% per year in the western regions during the early-2000s. Although low compared to harvest and decline, fire disturbance rates also increased in the early- to mid-2000s. We segmented annual decline-related disturbance rates to distinguish between newly impacted areas and areas undergoing gradual but consistent decline over multiple years. We also translated Landsat reflectance change into tree canopy cover change information for greater relevance to ecosystem modelers and forest managers, who can derive better understanding of forest-climate interactions and better adapt management strategies to changing climate regimes. Similar studies could be carried out for other countries where there are sufficient Landsat data and historic temporal snapshots of high-resolution imagery.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen V.; Schroeder, Todd A.; Bell, David M.; Masek, Jeffrey G.; Huang, Chengquan; Meigs, Garrett W. 2016. Forest disturbance across the conterminous United States from 1985-2012: The emerging dominance of forest decline. Forest Ecology and Management. 360: 242-252.


    Google Scholar


    Landsat time series, forest disturbance estimation, forest decline, TimeSync, remote sensing, probability sampling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page