Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mathias Steckel; W. Keith Moser; Miren del Río; Hans Pretzsch
    Date: 2020
    Source: Forests. 11: 627.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (957.0 KB)

    Description

    A higher frequency of increasingly severe droughts highlights the need for short-term measures to adapt existing forests to climate change. The maintenance of reduced stand densities has been proposed as a promising silvicultural tool for mitigating drought stress. However, the relationship between stand density and tree drought susceptibility remains poorly understood, especially across ecological gradients. Here, we analysed the effect of reduced stand density on tree growth and growth sensitivity, as well as on short-term drought responses (resistance, recovery, and resilience) of Scots pine (Pinus sylvestris L.), sessile oak (Quercus petraea (Matt.) Liebl.), and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson). Tree ring series from 409 trees, growing in stands of varying stand density, were analysed at sites with different water availability. For all species, mean tree growth was significantly higher under low compared with maximum stand density. Mean tree growth sensitivity of Scots pine was significantly higher under low compared with moderate and maximum stand density, while growth sensitivity of ponderosa pine peaked under maximum stand density. Recovery and resilience of Scots pine, as well as recovery of sessile oak and ponderosa pine, decreased with increasing stand density. In contrast, resistance and resilience of ponderosa pine significantly increased with increasing stand density. Higher site water availability was associated with significantly reduced drought response indices of Scots pine and sessile oak in general, except for resistance of oak. In ponderosa pine, higher site water availability significantly lessened recovery. Higher site water availability significantly moderated the positive effect of reduced stand density on drought responses. Stand age had a significantly positive effect on the resistance of Scots pine and a negative effect on recovery of sessile oak. We discuss potential causes for the observed response patterns, derive implications for adaptive forest management, and make recommendations for further research in this field.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Steckel, Mathias; Moser, W. Keith; del Río, Miren; Pretzsch, Hans. 2020. Implications of reduced stand density on tree growth and drought susceptibility: A study of three species under varying climate. Forests. 11: 627.

    Cited

    Google Scholar

    Keywords

    drought stress, growth sensitivity, Pinus, Quercus, recovery, resilience, resistance, stand density, thinning, water availability

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60329