Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ernesto Tejedor; Roberto Serrano‐Notivoli; Martin Luis; Miguel Angel Saz; Claudia Hartl; Scott St. George; Ulf Büntgen; Andrew M. Liebhold; Mathias Vuille; Jan Esper
    Date: 2020
    Source: Global Ecology and Biogeography
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (3.0 MB)


    Aim: Previous work demonstrated the global variability of synchrony in tree growth within populations, that is, the covariance of the year-to-year variability in growth of individual neighbouring trees. However, there is a lack of knowledge about the causes of this variability and its trajectories through time. Here, we examine whether climate can explain variation in within-population synchrony (WPS) across space but also through time and we develop models capable of explaining this variation. These models can be applied to the global tree cover under current and future climate change scenarios. Location: Global. Time period: 1901–2012. Major taxa studied: Trees. Methods: We estimated WPS values from a global tree-ring width database consisting of annual growth increment measurements from multiple trees at 3,579 sites. We used generalized linear mixed effects models to infer the drivers of WPS variability and temporal trends of global WPS. We then predicted WPS values across the global extent of tree cover. Finally, we applied our model to predict future WPS based on the RCP 8.5 (2045–2065 period) emission scenario. Results: Areas with the highest WPS are characterized by a combination of environments with both high mean annual temperature (>10°C) and low precipitation (<300 mm). Average WPS across all temperate forests has decreased historically and will continue to decrease. Potential implications of these patterns include changes in forest dynamics, such as higher tree growth and productivity and an increase in carbon sequestration. In contrast, the WPS of tropical forests of Central and South America will increase in the near future owing to reduced annual precipitation. Main conclusions: Climate explains WPS variability in space and time. We suggest that WPS might have value as an integrative ecological measure of the level of environmental stress to which forests are subjected and therefore holds potential for diagnosing effects of global climate change on tree growth.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Tejedor, Ernesto; Serrano‐Notivoli, Roberto; Luis, Martin; Saz, Miguel Angel; Hartl, Claudia; St. George, Scott; Büntgen, Ulf; Liebhold, Andrew M.; Vuille, Mathias; Esper, Jan. 2020. A global perspective on the climate‐driven growth synchrony of neighbouring trees. Global Ecology and Biogeography. 29(7): 1114-1125.


    Google Scholar


    global, synchrony, tree ring, tree stress indicator

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page