Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Solomon B. Ghezehei; Jeff Wright; Ronald S. Zalesny; Elizabeth Guthrie Nichols; Dennis W. Hazel
    Date: 2020
    Source: Forest Ecology and Management
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (924.0 KB)

    Description

    Diversity of applications, productivity potential, broad suitability and genetic variations make Populus a valuable fast-growing genus. Our goal was to assess if clonal site-suitability varies with rotation-length. We examined survival, growth (height, diameter at breast height) and estimated stem and total-wood (stem and branches) biomass of 89 clones near Fountain, North Carolina (35°42′7.52″ N, 77°34′35.04″ W) in the coastal southeastern USA at four- and eight-year rotations. The unsuitability of some clones was evident at early age while other clones became less suitable with stand age. Specifically, most mortality occurred by year-four, yet 25% clones experienced 17 to 50% mortality at older ages. Clone '379' was the most site-suitable with 100% survival and 141.3 kg total-wood per tree (approximately 47.5 Mg ha−1 yr−1). Moreover, several clones with low survival produced high per-hectare biomass. Biomass (stem and total-wood) rankings changed between four- and eightyear rotations with only three top-ten clones in year-four ('379', '402', '449') in the top-ten of year-eight and two top-ten clones in year-eight ('379', '402') also in the top-ten of year-four. Clonal productivity differences increased by 25 to 836% with age. Clones of TD (Populus trichocarpa Torr and Gray × P. deltoids Barts Ex Marsh) and DD (P. deltoides × P. deltoides) genotypes were affected by wood infection (Septoria musiva) indicating that selection based on disease resistance should be performed at clonal level. Hence, for productivity-focused stands, site-suitable clones should be selected by productivity first, then narrowed by survival and rotation length. Changes in the most ‘site-suitable’ clones can be expected between longer and shorter rotations.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Ghezehei, Solomon B.; Wright, Jeff; Zalesny, Ronald S.; Nichols, Elizabeth Guthrie; Hazel, Dennis W. 2020. Matching site-suitable poplars to rotation length for optimized productivity. Forest Ecology and Management. 457: 117670. 9 p. https://doi.org/10.1016/j.foreco.2019.117670.

    Cited

    Google Scholar

    Keywords

    Efficient SRWC design, Populus, Rotation length, Rotation-suitable clones, Site-suitability

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60361