Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Wildland fire is an important disturbance agent in forests of the American Northwest. Historical fire suppression efforts have contributed to an accumulation of fuels in many Northwestern forests and may result in more frequent and/or more severe wildfire events. Here we investigate the extent to which atmospheric and climatic variability may contribute to variability in annual area burned on 20 National Forests in Washington, Oregon, and Idaho. Empirical orthogonal function (EOF) analysis was used to identify coherent patterns in area burned by wildfire in the Pacific Northwest. Anomaly fields of 500-hPa height were regressed onto the resulting principal-component time series to identify the patterns in atmospheric circulation that are associated with variability in area burned by wildfire. Additionally, cross-correlation functions were calculated for the Palmer drought severity index (PDSI) over the year preceding the wildfire season. Parallel analyses based on superposed epoch analysis focused only on the extreme fire years (both large and small) to discriminate the controls on extreme years from the linear responses identified in the regression analyses. Four distinct patterns in area burned were identified, each associated with distinct climatic processes. Extreme wildfire years are forced at least in part by antecedent drought and summertime blocking in the 500-hPa height field. However the response to these forcings is modulated by the ecology of the dominant forest. In more mesic forest types antecedent drought is a necessary precondition for forests to burn, but it is not a good predictor of area burned due to the rarity of subsequent ignition. At especially dry locations, summertime blocking events can lead to increases in area burned even in the absence of antecedent drought. At particularly xeric locations summertime cyclones can also lead to increased area burned, probably due to dry lightning storms that bring ignition and strong winds but little precipitation. These results suggest that fuels treatments alone may not be effective at reducing area burned under extreme climatic conditions and furthermore that anthropogenic climate change may have important implications for forest management.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Gedalof, Ze'ev; Peterson, David L.; Mantua, Nathan J. 2005. Atmospheric, climatic, and ecological controls on extreme fire years in the Northwestern United States. Ecological Applications. 15(1): 154-174. https://doi.org/10.1890/03-5116

    Cited

    Google Scholar

    Keywords

    Climatic variability, empirical orthogonal function analysis, Pacific Decadal Oscillation, Pacific Northwest, top-down controls, wildfire.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60403