Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jason S. BarkerJeremy S. FriedAndrew N. Gray
    Date: 2019
    Source: Forests. 10(11): 958-.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (1.0 MB)

    Description

    Forest land managers rely on predictions of tree mortality generated from fire behavior models to identify stands for post-fire salvage and to design fuel reduction treatments that reduce mortality. A key challenge in improving the accuracy of these predictions is selecting appropriate wind and fuel moisture inputs. Our objective was to evaluate post-fire mortality predictions using the Forest Vegetation Simulator Fire and Fuels Extension (FVS-FFE) to determine if using representative fire-weather data would improve prediction accuracy over two default weather scenarios. We used pre- and post-fire measurements from 342 stands on forest inventory plots, representing a wide range of vegetation types affected by wildfire in California, Oregon, and Washington. Our representative weather scenarios were created by using data from local weather stations for the time each stand was believed to have burned. The accuracy of predicted mortality (percent basal area) with different weather scenarios was evaluated for all stands, by forest type group, and by major tree species using mean error, mean absolute error (MAE), and root mean square error (RMSE). One of the representative weather scenarios, MeanWind, had the lowest mean error (4%) in predicted mortality, but performed poorly in some forest types, which contributed to a relatively high RMSE of 48% across all stands. Driven in large part by over-prediction of modelled flame length on steeper slopes, the greatest over-prediction mortality errors arose in the scenarios with higher winds and lower fuel moisture. Our results also indicated that fuel moisture was a stronger influence on post-fire mortality than wind speed. Our results suggest that using representative weather can improve accuracy of mortality predictions when attempting to model over a wide range of forest types. Focusing simulations exclusively on extreme conditions, especially with regard to wind speed, may lead to over-prediction of tree mortality from fire.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Barker, Jason S.; Fried, Jeremy S.; Gray, Andrew N. 2019. Evaluating model predictions of fire induced tree mortality using wildfire-affected forest inventory measurements. Forests. 10(11): 958-. https://doi.org/10.3390/f10110958.

    Cited

    Google Scholar

    Keywords

    Wildfire, tree mortality, fire behavior, post-fire management, forest inventory (FIA), FVS-FFE.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60515