Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites are known to carry ascospores of Ophiostoma minus, which lends to outcompete the mutualistic fungi carried by D. frontalis. Experimental additions and removals of mites from beetles demonstrated that Tursonemus propagate 0. minus in beetle oviposition galleries. Furthermore, the abundance of Tursonemus and 0. minus tended to covary in nature. These results verified a strong mutualism between Tursonemus and O. minus. Results also indicated that 0. minus is an antagonist of D. frontalis: beetle larvae seldom survived in the presence of O. minus (compared to 83% survival elsewhere). Apparently, this is an indirect result of O. minus outcompeting the two species of mycangial fungi that are critical to beetle nutrition. Thus, Tarsonemus mites close a loop of species interactions that includes a commensalism (mites and beetles), a mutualism (mites and O. minus), asymmetric competition (O. minus and mycangial fungi), and another mutualism (mycangial fungi and beetles). This interaction system produces negative feedback that could contribute to the endogenous population dynamics of D. frontalis. Reproductive rate of Tarsonemus was more temperature-sensitive than beetle generation time for (which constrains the time for mite reproduction within a tree). This differential temperature sensitivity produces a narrow range of temperatures (centred at 27°C) in which mile reproduction per D. frontalis generation can attain its maximum of 100 mites/beetle. Consequently, seasonal oscillations in temperature are predicted to produce oscillations in the D. frontalis community, and climatic differences between regions could influence the community to dampen or exacerbate the cyclical outbreak dynamics of D. frontalis.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Lombardero, Maria J.; Ayres, Matthew P.; Hofstetter, Richard W.; Moser, John C.; Lepzig, Kier D. 2003. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae). Oikos 102: 243-252.

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page