Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Connectivity and wildlife corridors are often key components to successful conservation and management plans. Connectivity for wildlife is typically modeled in a static environment that reflects a single snapshot in time. However, it has been shown that, when compared with dynamic connectivity models, static models can underestimate connectivity and mask important population processes. Therefore, including dynamism in connectivity models is important if the goal is to predict functional connectivity. We incorporated four levels of dynamism (individual, daily, seasonal, and interannual) into an individual-based movement model for black bears (Ursus americanus) in Massachusetts, USA. We used future development projections to model movement into the year 2050. We summarized habitat connectivity over the 32-year simulation period as the number of simulated movement paths crossing each pixel in our study area. Our results predict black bears will further colonize the expanding part of their range in the state and move beyond this range towards the greater Boston metropolitan area. This information is useful to managers for predicting and addressing human-wildlife conflict and in targeting public education campaigns on bear awareness. Including dynamism in connectivity models can produce more realistic models and, when future projections are incorporated, can ensure the identification of areas that o er long-term functional connectivity for wildlife.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Zeller, Katherine A.; Wattles, David W.; Bauder, Javan M.; DeStefano, Stephen. 2020. Forecasting seasonal habitat connectivity in a developing landscape. Land. 9: 233.


    Google Scholar


    dynamic connectivity, black bear, Ursus americanus, individual-based movement model, IBMM, GPS-telemetry, wildlife, corridor, agent-based model

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page