Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    During wildland fires, which include both planned (prescribed fire) and unplanned (wildfire) fires, live and dead plants may be subject to both radiative and convective heat transfer mechanisms. In this study, the pyrolysis of 14 live plant species native to the forests of the southern United States was investigated using a flat-flame burner (FFB) apparatus under three heating modes in order to mimic pyrolysis of plants during wildland fires. The heating modes were: (1) radiation-only, where the plants were pyrolyzed under a moderate heating rate of 4 °C s−1 (radiative flux of 50 kW m−2); (2) convection-only, where the FFB apparatus was operated at a high heating rate of 180 °C s−1 (convective heat flux of 100 kW m−2); and (3) a combination of convection and radiation, where the plants were exposed to both convective and radiative heat transfer mechanisms. Data were also compared with slow heating experiments (0.5 °C s−1). During the experiments, the pyrolysis products were collected and analyzed using GC–MS for the analysis of tars and GC-TCD for the analysis of light gases. The results indicate that the highest light gas and tar yields were obtained from the combined mode, which was performed at a higher pyrolysis temperature and heating rate. CO, CO2, CH4, and H2 were the major light gas species in all three heating modes. The radiation-only mode led to formation of primary tars and a few secondary tars consisting of aliphatic and 1–2 ring aromatic compounds with 1 to 3 attachments, including alkyl, hydroxyl, and methoxy groups.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Safdari, Mohammad-Saeed; Amini, Elham; Weise, David R.; Fletcher, Thomas H. 2020. Comparison of pyrolysis of live wildland fuels heated by radiation vs. convection. Fuel. 268: 117342. https://doi.org/10.1016/j.fuel.2020.117342.

    Cited

    Google Scholar

    Keywords

    Pyrolysis, Heat transfer mechanism, Radiation, Convection, Tar, Light gas

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60807