Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Peijian Shi; Haiganoush K. Preisler; Brady K. Quinn; Jie Zhao; Weiwei Huang; Alexander Röll; Xiaofei Cheng; Huarong Li; Dirk Hölscher
    Date: 2020
    Source: Global Ecology and Conservation. 22: e00924
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Southwest Research Station
    PDF: Download Publication  (3.0 MB)

    Description

    Moso bamboo is widespread in natural forests and is cultivated over large areas in China. This study investigated how climate controls its distribution, about which little is known. We collected moso bamboo presence-absence data from 674 sites with long-term climate data in Mainland China. Generalized additive models that included location and climate variables were used to test the effects of these predictors on the species’ occurrence. We identified the best model as the one with the lowest Akaike’s Information Criterion value that contained only statistically significant predictors. We found precipitation, especially the mean (APRE) and interannual standard deviation (SDPRE) of the annual precipitation at each site, rather than temperature, to be the main factors determining the distribution of moso bamboo in Mainland China. In addition, we found that there was a significant power law relationship between the mean and interannual variance of precipitation, which made it possible to make long-term predictions. The SDPRE in climate scenarios of changes in the APRE could then be calculated using the fitted power law relationship. We simulated six climate scenarios, in which the APRE increased/decreased by 25, 50, and 75%. We used the 0.5 and 0.9 probability contour lines of model predictions to represent the suitable and core distributions, respectively, of moso bamboo under each scenario. The current core distribution of moso bamboo in Mainland China predicted by our model agreed with actual observations. Our model suggested that the middle and lower reaches of the Huaihe River Plain in eastern China should be climatically suitable for the growth of moso bamboo; it seems likely that its current absence there has resulted from intensive land use. Our model predicted that changes in APRE can strongly alter the distribution of moso bamboo. Increased APRE would expand the core distribution of moso bamboo into southern Shandong Province and over all of Chongqing and most of Guizhou Provinces, which are areas not currently in the species’ core distribution. Conversely, decreased APRE would shrink the core distribution of moso bamboo to the junction of Anhui, Fujian, Jiangxi, and Zhejiang Provinces. We showed that the current distribution of moso bamboo is mainly determined by annual precipitation rather than temperature. The deviations between the moso distributions predicted by the climate model and the current distribution in some plain areas might have resulted from human activities. Future changes in annual precipitation will probably change the distribution of moso bamboo considerably.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Shi, Peijian; Preisler, Haiganoush K.; Quinn, Brady K.; Zhao, Jie; Huang, Weiwei; Röll, Alexander; Cheng, Xiaofei; Li, Huarong; Hölscher, Dirk. 2020. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Global Ecology and Conservation. 22: e00924. https://doi.org/10.1016/j.gecco.2020.e00924.

    Cited

    Google Scholar

    Keywords

    Climate scenario, Generalized additive model, Presence-absence data, Species distribution, Taylor’s power law, Variability in annual precipitation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/60850