Skip to main content
U.S. flag

An official website of the United States government

Improving individual tree crown delineation and attributes estimation of tropical forests using airborne LiDAR data

Author(s):

Wan Shafrina Wan Mohd Jaafar
Iain Hector Woodhouse
Carlos Alberto Silva
Hamdan Omar
Khairul Nizam Abdul Maulud
Carine Klauberg
Adrian Cardil
Midhun Mohan

Year:

2018

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station

Source:

Forests. 9: 759.

Description

Individual tree crown (ITC) segmentation is an approach to isolate individual tree from the background vegetation and delineate precisely the crown boundaries for forest management and inventory purposes. ITC detection and delineation have been commonly generated from canopy height model (CHM) derived from light detection and ranging (LiDAR) data. Existing ITC segmentation methods, however, are limited in their efficiency for characterizing closed canopies, especially in tropical forests, due to the overlapping structure and irregular shape of tree crowns. Furthermore, the potential of 3-dimensional (3D) LiDAR data is not fully realized by existing CHM-based methods. Thus, the aim of this study was to develop an efficient framework for ITC segmentation in tropical forests using LiDAR-derived CHM and 3D point cloud data in order to accurately estimate tree attributes such as the tree height, mean crown width and aboveground biomass (AGB). The proposed framework entails five major steps: (1) automatically identifying dominant tree crowns by implementing semi-variogram statistics and morphological analysis; (2) generating initial tree segments using a watershed algorithm based on mathematical morphology; (3) identifying "problematic" segments based on predetermined set of rules; (4) tuning the problematic segments using a modified distance-based algorithm (DBA); and (5) segmenting and counting the number of individual trees based on the 3D LiDAR point clouds within each of the identified segment. This approach was developed in a way such that the 3D LiDAR points were only examined on problematic segments identified for further evaluations. 209 reference trees with diameter at breast height (DBH) ≥ 10 cm were selected in the field in two study areas in order to validate ITC detection and delineation results of the proposed framework. We computed tree crown metrics (e.g., maximum crown height and mean crown width) to estimate aboveground biomass (AGB) at tree level using previously published allometric equations. Accuracy assessment was performed to calculate percentage of correctly detected trees, omission and commission errors. Our method correctly identified individual tree crowns with detection accuracy exceeding 80 percent at both forest sites. Also, our results showed high agreement (R2 > 0.64) in terms of AGB estimates using 3D LiDAR metrics and variables measured in the field, for both sites. The findings from our study demonstrate the efficacy of the proposed framework in delineating tree crowns, even in high canopy density areas such as tropical rainforests, where, usually the traditional algorithms are limited in their performances. Moreover, the high tree delineation accuracy in the two study areas emphasizes the potential robustness and transferability of our approach to other densely forested areas across the globe.

Citation

Jaafar, Wan Shafrina Wan Mohd; Woodhouse, Iain Hector; Silva, Carlos Alberto; Omar, Hamdan; Maulud, Khairul Nizam Abdul; Hudak, Andrew Thomas; Klauberg, Carine; Cardil, Adrian; Mohan, Midhun. 2018. Improving individual tree crown delineation and attributes estimation of tropical forests using airborne LiDAR data. Forests. 9: 759.

Cited

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/63199