Skip to main content
U.S. flag

An official website of the United States government

Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data


Melanie K. Vanderhoof
Todd J. Hawbaker
Paul D. Henne
Sean P. Burns



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station


Journal of Geophysical Research: Biogeosciences, 123: 3231-3249.


Landscape carbon (C) flux estimates help assess the ability of terrestrial ecosystems to buffer further increases in anthropogenic carbon dioxide (CO2) emissions. Advances in remote sensing have led to coarse-scale estimates of gross primary productivity (GPP; e.g., MODIS 17), yet efforts to develop spatial respiration products are lacking. Here we demonstrate a method to predict growing season soil respiration at a regional scale in a mixed subalpine ecosystem. We related field measurements (n = 396) of growing season soil respiration mostly from subalpine forests in the Southern Rocky Mountains ecoregion to a suite of biophysical predictors using a Random Forest model (30-m pixel size). We found that Landsat Enhanced Vegetation Index, growing season aridity index, temperature, precipitation, elevation, and slope aspect explained spatiotemporal variability in soil respiration. Ourmodel had a psuedo-r2 of 0.45 and root-mean-square error of roughly one quarter of the mean value of respiration. Predicted growing season soil respiration across the region was remarkably consistent across 2004, 2005, and 2006 (150-day sums of 542.8, 544.3, and 536.5 g C/m2, respectively). Yet we observed substantial variability in spatial patterns of soil respiration predictions that varied among years, suggesting that our method is sensitive to changes in respiration drivers. Mean predicted growing season soil respiration was 73% of MODIS GPP, while predicted soil respiration was generally within 20% of nocturnal net ecosystem exchange from nearby eddy covariance towers. Thus, geospatial and remotely sensed data sets can be used to estimate soil respiration at landscape scales.


Berryman, Erin M.; Vanderhoof, Melanie K.; Bradford, John B.; Hawbaker, Todd J.; Henne, Paul D.; Burns, Sean P.; Frank, John M.; Birdsey, Richard A.; Ryan, Michael G. 2018. Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data. Journal of Geophysical Research: Biogeosciences, 123: 3231-3249.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.