Skip to main content
U.S. flag

An official website of the United States government

Spatially distributed overstory and understory leaf area index estimated from forest inventory data


David G. Tarboton



Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Rocky Mountain Research Station


Water. 14: 2414.


Forest change affects the relative magnitudes of hydrologic fluxes such as evapotranspiration (ET) and streamflow. However, much is unknown about the sensitivity of streamflow response to forest disturbance and recovery. Several physically based models recognize the different influences that overstory versus understory canopies exert on hydrologic processes, yet most input datasets consist of total leaf area index (LAI) rather than individual canopy strata. Here, we developed stratum-specific LAI datasets with the intent of improving the representation of vegetation for ecohydrologic modeling. We applied three pre-existing methods for estimating overstory LAI, and one new method for estimating both overstory and understory LAI, to measurements collected from a probability-based plot network established by the US Forest Service’s Forest Inventory and Analysis (FIA) program, for a modeling domain in Montana, MT, USA. We then combined plot-level LAI estimates with spatial datasets (i.e., biophysical and remote sensing predictors) in a machine learning algorithm (random forests) to produce annual gridded LAI datasets. Methods that estimate only overstory LAI tended to underestimate LAI relative to Landsat-based LAI (mean bias error ≥ 0.83), while the method that estimated both overstory and understory layers was most strongly correlated with Landsat-based LAI (r2 = 0.80 for total LAI, with mean bias error of -0.99). During 1984-2019, interannual variability of understory LAI exceeded that for overstory LAI; this variability may affect partitioning of precipitation to ET vs. runoff at annual timescales. We anticipate that distinguishing overstory and understory components of LAI will improve the ability of LAI-based models to simulate how forest change influences hydrologic processes.


Goeking, Sara A.; Tarboton, David G. 2022. Spatially distributed overstory and understory leaf area index estimated from forest inventory data. Water. 14: 2414.


Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.