Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. Wayne Skaggs; George M Chescheir; Glen P. Fernandez; Devendra M. Amatya
    Date: 2004
    Source: Pp.323-324, In Proc. of Abstracts and Papers (on CD-ROM) of the 6th International Conf. on Hydro-Science and Engineering, Brisbane, Australia, May 31-June 03, 2004, eds. M.S. Altinakar, S.S.Y. Wang, K.P. Holz. and M. Kawahara.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (369 KB)

    Description

    Some of the world's most productive cropland requires artificial or improved drainage for efficient agricultural production. Soil hydraulic properties, such as hydraulicconductivity and drainable porosity, are conventionally used in design of drainage systems. While it is recognized that these soil properties vary over a relatively wide range within a given soil series, it is generally assumed they can be approximated based on soil type, independent of crop or land use. Effects of land use on hydrology of drained soils in the North Carolina lower coastal plain were investigated by comparing hydrologic measurements on drained agricultural cropland, drained forest land (Loblolly pine), and an undrained forested wetland. Higher ET on the drained pine forest site resulted in reduced drainage outflow and deeper water tables compared to the agricultural site, Measurements for the one year of record available for the wetland site showed water tables near the surface but outflows similar to the drained forest site, Field effective hydraulic conductivity in the top 70 cm of the drained forest site was more than two orders of magnitude greater than that of corresponding layers of the agricultural site. Drainable porosity, based on measured soil water characteristics, was also much higher for the forested site. Long term (50-year) DRAINMOD simulations predicted average annuat drainage outflow of 51.4 cm for the agricultural field as compared to 37.6 cm for the forested site. The difference resulted primarily from greater ET predicted for the forested site. Because of the high conductivity of the surface layers, predicted surface runoff from the forested site was nil as compared to an average annual runoff of 13 cm for the drained cropland site. Results of long-term simulations were used to analyze these effects for the widely variable seasonal and annual weather conditions of eastern NC.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Skaggs, R. Wayne; Chescheir, George M; Fernandez, Glen P.; Amatya, Devendra M. 2004. Effects of Land Use of the Hydrology of Drained Coastal Plain Watersheds. Pp.323-324, In Proc. of Abstracts and Papers (on CD-ROM) of the 6th International Conf. on Hydro-Science and Engineering, Brisbane, Australia, May 31-June 03, 2004, eds. M.S. Altinakar, S.S.Y. Wang, K.P. Holz. and M. Kawahara.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/7167