Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the geometry and material characteristics affecting the critical buckling stress of box panels to examine their postbuckling response. The finite element model enables a broad scope of simulated panels to be examined economically. Results lead to a postbuckling model fit to the predictions and a better understanding of how to unify elastic and inelastic failure data from actual experiments and form a more general box strength formula.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Urbanik, Thomas J.; Saliklis, Edmond P. 2003. Finite element corroboration of buckling phenomena observed in corrugated boxes. Wood and fiber science. Vol. 35, no. 3 (2003): Pages 322-333


    FEA, postbuckling, box compression strength, paperboard, plates

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page