Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. W. Hofstetter; Jolie B. MahfouzKier D. Klepzig; M. P. Ayres
    Date: 2005
    Source: Journal of Chemical Ecology, Vol. 31, No. 3, March 2005
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (261 KB)

    Description

    We examined the interaction between host trees and fungi associated with a tree-killing bark beetle, Dendroctonus frontalis. We evaluated (1) the response of four Pinus species to fungal invasion and (2) the effects of plant secondary metabolites on primary growth of and secondary colonization of three consistent fungal associates. Two of these fungi, Entomocorticium sp. A and Ophiostoma ranaculosum, are obligate mutualists with D. frontalis, and the third associate is a blue-staining fungus, O. minus, that is commonly introduced by beetles and phoretic mites. O. minus negatively affects beetle larvae and in high abundance can impact D. frontalis population dynamics. Size of lesions formed and quantity of secondary metabolites produced in response to fungal inoculations varied significantly among Pinus species. However, monoterpene composition within infected tissue did not significantly vary across treatments. While all eight tested metabolites negatively affected the growth rate of O. minus, only 4-allylanisole, p-cymene, and terpinene reduced the growth of the mycangial fungi. Surprisingly, growth rates of mycangial fungi increased in the presence of several secondary metabolite volatiles. O. minus out-competed both mycangial fungi, but the presence of secondary metabolites altered the outcome slightly. O. ranaculosum out-performed E. sp. A in the presence of dominant conifer monoterpenes, such as α- and β-pinene. Volatiles from the mycangial fungi, particularly E. sp. A, had a negative effect on O. minus growth. In general, phloem phytochemistry of particular Pinus species appeared to alter the relative growth and competitiveness of mutualistic and non-mutualistic fungi associated with D. frontalis. The outcome of interactions among these fungi likely has important consequences for the population dynamics of D. frontalis.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Hofstetter, R. W.; Mahfouz, Jolie B.; Klepzig, Kier D.; Ayres, M. P. 2005. Effects of tree phytochemistery on the interactions among endophloedic fungi associated with the southern pine beetle. Journal of Chemical Ecology, Vol. 31, No. 3, March 2005

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/9483