Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert J. RossJohn I. ZerbeXiping Wang; David W. Green; Roy F. Pellerin
    Date: 2005
    Source: Forest products journal. Vol. 55, no. 3 (Mar. 2005): Pages 90-94
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (113 KB)


    With the need for evaluating the utilization of veneer peeler log cores in higher value products and the increasing importance of utilizing round timbers in poles, posts, stakes, and building construction components, we conducted a cooperative project to verify the suitability of stress wave nondestructive evaluation techniques for assessing peeler cores and some mechanical properties of lumber that might be derived from peeler cores. Longitudinal stress waves were used to evaluate peeler cores from 111 Douglas-fir stems. Supplementary dynamic and static tests were then conducted on 2 by 4 lumber sawn from the cores. Stress wave testing of peeler cores was found to be a good predictor of static and dynamic modulus of elasticity (MOE) of lumber sawn from the cores. However, correlations between stress wave MOE of the peeler cores and bending and tensile strength of derived standard-size lumber were low. Nonetheless, based on past experience, the data derived could establish a means for classifying peeler cores into three stress classes, which would have higher levels of confidence for assigned bending and tensile design strength. For lumber stress wave MOE compared with peeler core stress wave MOE, the coefficient of determination (r2) value was 0.8 1. In the comparison of transverse vibration MOE of lumber with stress wave MOE, peeler cores had a corresponding r2 of 0.72. Comparison of statically determined tensile MOE of the lumber with stress wave MOE ofthe cores showed an 9 of 0.70, but for ultimate tensile strength ofthe lumber taken as one large group compared with stress wave MOE, the r2 was only 0.38. For statically determined modulus ofrupture ofthe derived lumber taken as a single group compared with dynamic stress wave MOE of the peeler cores, the r2 was 0.32.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Ross, Robert J.; Zerbe, John I.; Wang, Xiping; Green, David W.; Pellerin, Roy F. 2005. Stress wave nondestructive evaluation of Douglas-fir peeler cores. Forest products journal. Vol. 55, no. 3 (Mar. 2005): Pages 90-94


    Douglas fir, peeler cores, nondestructive testing, stress waves

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page