Fire Effects Information System (FEIS)
FEIS Home Page

Fragaria vesca


  © 2006 Vivian Parker
Munger, Gregory T. 2006. Fragaria vesca. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: [].


Fragaria americana (Porter) Britton
    = Fragaria vesca L. [126]
Fragaria americana (Porter) Britton
    = Fragaria vesca var. americana Porter [63]
Fragaria vesca L. var. americana
    = Fragaria americana (Porter) Britton [111]
Fragaria vesca L. var. americana Porter
    = Fragaria vesca L. [126]
Fragaria bracteata Heller
    = Fragaria americana (Porter) Britton [108]
Fragaria bracteata Heller
    = Fragaria vesca ssp. bracteata (Heller) Staudt [28,87]
Fragaria vesca var. bracteata (Heller) Davis
    = Fragaria vesca ssp. bracteata (Heller) Staudt [87]
Fragaria vesca ssp. bracteata Heller Staudt
    = Fragaria vesca var. bracteata (Heller) Davis [173]
Fragaria bracteata Heller
    = Fragaria vesca var. bracteata (Heller) Davis [62,79,81,173]
Fragaria helleri Holz.
    = Fragaria vesca var. bracteata (Heller) Davis [79,81,173]
Fragaria ovalis (Lehm.) Rydb.
    = Fragaria vesca L. var. bracteata (Heller) Davis [62]
Fragaria retrorsa
    = Fragaria vesca var. bracteata (Heller) Davis [79]


woods strawberry
woodland strawberry
wood strawberry
starvling strawberry
wild strawberry

The scientific name of woods strawberry is Fragaria vesca L. (Rosaceae) [27,37,47,48,49,51,61,62,63,78,79,80,89,102,111,126,133,155,162,167,173,176]. The following subspecies are also recognized:

Fragaria vesca ssp. americana (Porter) Staudt [89,167,176]
Fragaria vesca ssp. bracteata (Heller) Staudt [28,87,89,123,171,172]
Fragaria vesca ssp. californica [78,89]
Fragaria vesca ssp. vesca [89]

According to Cronquist and others [37], woods strawberry and Virginia strawberry (Fragaria virginiana) do not hybridize in the western U.S., and any similarities in diagnostic traits are more likely attributable to variability within species.

For the purposes of this review, the common name "woods strawberry" is used when discussing characteristics common to (or assumed to be common to) the species in general. When referring to infrataxa, the scientific names for the subspecies listed above are used. When referring to multiple Fragaria spp., the name "wild strawberries" is used.


No special status

Information on state-level protected status of plants in the United States is available at Plants Database.


SPECIES: Fragaria vesca
In the western United States, woods strawberry is distributed from Washington south to California, Arizona, New Mexico [28,37,59,72,78,90,108,157,173,175], and the Guadalupe Mountains of western Texas [37,86]; and east through the Rocky Mountain region [23,37,38,49,62,81,99,171,172,173] and the Black Hills [47,95,162]. Cronquist and others [37] suggest that woods strawberry is "seemingly absent from the western ¾ of the Great Basin", despite indications that its occurrence has been recorded in Nevada [37,81]. It occurs somewhat infrequently in the northern Great Plains, south to Nebraska [63,74]. In the eastern United States, woods strawberry is distributed from the Lake States east to coastal New England, and south to Missouri, Tennessee, and North Carolina [6,61,63,65,111,126,134,141,155,176]. Kartesz and Meacham [89] indicate the possibility that it also occurs in Mississippi. Woods strawberry is introduced in Hawaii [8]. Plants Database provides state distribution maps for woods strawberry and its infrataxa.

In Canada, woods strawberry occurs from coastal British Columbia east to Newfoundland [37,61,72,79,80,90,107,125,134,134,173], as well as in Northwest Territories [89]. It also occurs in Baja California, Mexico [37,78,108,175].

Globally, woods strawberry distribution is circumboreal [98,99]. While it is widely considered a native species in North America, at least some populations may originate from introduced European stock [61,111,141], especially in the northeastern United States and adjacent Canada [61,80,134,141], and the northern Great Plains [63].

Comprehensive surveys examining the presence or absence of woods strawberry within the following biogeographic vegetation schemes are not available. These lists represent a "best estimate" of woods strawberry occurrence based on information obtained from floras and other literature, herbarium samples, and confirmed observations.

FRES10 White-red-jack pine
FRES11 Spruce-fir
FRES13 Loblolly-shortleaf pine
FRES14 Oak-pine
FRES15 Oak-hickory
FRES16 Oak-gum-cypress
FRES17 Elm-ash-cottonwood
FRES18 Maple-beech-birch
FRES19 Aspen-birch
FRES20 Douglas-fir
FRES21 Ponderosa pine
FRES22 Western white pine
FRES23 Fir-spruce
FRES24 Hemlock-Sitka spruce
FRES25 Larch
FRES26 Lodgepole pine
FRES27 Redwood
FRES28 Western hardwoods
FRES29 Sagebrush
FRES30 Desert shrub
FRES33 Southwestern shrubsteppe
FRES34 Chaparral-mountain shrub
FRES35 Pinyon-juniper
FRES37 Mountain meadows
FRES38 Plains grasslands
FRES39 Prairie
FRES40 Desert grasslands
FRES41 Wet grasslands
FRES44 Alpine

STATES/PROVINCES: (key to state/province abbreviations)




1 Northern Pacific Border
2 Cascade Mountains
3 Southern Pacific Border
4 Sierra Mountains
5 Columbia Plateau
6 Upper Basin and Range
7 Lower Basin and Range
8 Northern Rocky Mountains
9 Middle Rocky Mountains
10 Wyoming Basin
11 Southern Rocky Mountains
12 Colorado Plateau
13 Rocky Mountain Piedmont
14 Great Plains
15 Black Hills Uplift
16 Upper Missouri Basin and Broken Lands

K002 Cedar-hemlock-Douglas-fir forest
K003 Silver fir-Douglas-fir forest
K004 Fir-hemlock forest
K005 Mixed conifer forest
K006 Redwood forest
K007 Red fir forest
K008 Lodgepole pine-subalpine forest
K010 Ponderosa shrub forest
K011 Western ponderosa forest
K012 Douglas-fir forest
K013 Cedar-hemlock-pine forest
K014 Grand fir-Douglas-fir forest
K015 Western spruce-fir forest
K016 Eastern ponderosa forest
K017 Black Hills pine forest
K018 Pine-Douglas-fir forest
K019 Arizona pine forest
K020 Spruce-fir-Douglas-fir forest
K021 Southwestern spruce-fir forest
K022 Great Basin pine forest
K025 Alder-ash forest
K026 Oregon oakwoods
K028 Mosaic of K002 and K026
K029 California mixed evergreen forest
K030 California oakwoods
K031 Oak-juniper woodland
K032 Transition between K031 and K037
K034 Montane chaparral
K036 Mosaic of K030 and K035
K037 Mountain-mahogany-oak scrub
K081 Oak savanna
K082 Mosaic of K074 and K100
K093 Great Lakes spruce-fir forest
K094 Conifer bog
K095 Great Lakes pine forest
K096 Northeastern spruce-fir forest
K098 Northern floodplain forest
K099 Maple-basswood forest
K100 Oak-hickory forest
K101 Elm-ash forest
K102 Beech-maple forest
K103 Mixed mesophytic forest
K104 Appalachian oak forest
K106 Northern hardwoods
K107 Northern hardwoods-fir forest
K108 Northern hardwoods-spruce forest
K109 Transition between K104 and K106
K110 Northeastern oak-pine forest
K111 Oak-hickory-pine

1 Jack pine
5 Balsam fir
12 Black spruce
13 Black spruce-tamarack
14 Northern pin oak
15 Red pine
16 Aspen
17 Pin cherry
18 Paper birch
19 Gray birch-red maple
20 White pine-northern red oak-red maple
21 Eastern white pine
22 White pine-hemlock
23 Eastern hemlock
24 Hemlock-yellow birch
25 Sugar maple-beech-yellow birch
26 Sugar maple-basswood
27 Sugar maple
28 Black cherry-maple
30 Red spruce-yellow birch
31 Red spruce-sugar maple-beech
32 Red spruce
33 Red spruce-balsam fir
35 Paper birch-red spruce-balsam fir
37 Northern white-cedar
38 Tamarack
39 Black ash-American elm-red maple
42 Bur oak
43 Bear oak
44 Chestnut oak
45 Pitch pine
46 Eastern redcedar
50 Black locust
51 White pine-chestnut oak
52 White oak-black oak-northern red oak
53 White oak
55 Northern red oak
57 Yellow-poplar
58 Yellow-poplar-eastern hemlock
59 Yellow-poplar-white oak-northern red oak
60 Beech-sugar maple
61 River birch-sycamore
62 Silver maple-American elm
63 Cottonwood
64 Sassafras-persimmon
65 Pin oak-sweetgum
75 Shortleaf pine
76 Shortleaf pine-oak
78 Virginia pine-oak
79 Virginia pine
80 Loblolly pine-shortleaf pine
81 Loblolly pine
82 Loblolly pine-hardwood
87 Sweetgum-yellow-poplar
93 Sugarberry-American elm-green ash
94 Sycamore-sweetgum-American elm
95 Black willow
97 Atlantic white-cedar
107 White spruce
108 Red maple
109 Hawthorn
110 Black oak
201 White spruce
202 White spruce-paper birch
203 Balsam poplar
204 Black spruce
205 Mountain hemlock
206 Engelmann spruce-subalpine fir
207 Red fir
208 Whitebark pine
209 Bristlecone pine
210 Interior Douglas-fir
211 White fir
212 Western larch
213 Grand fir
215 Western white pine
216 Blue spruce
217 Aspen
218 Lodgepole pine
219 Limber pine
220 Rocky Mountain juniper
221 Red alder
222 Black cottonwood-willow
224 Western hemlock
226 Coastal true fir-hemlock
227 Western redcedar-western hemlock
228 Western redcedar
229 Pacific Douglas-fir
230 Douglas-fir-western hemlock
231 Port-Orford-cedar
232 Redwood
233 Oregon white oak
234 Douglas-fir-tanoak-Pacific madrone
235 Cottonwood-willow
236 Bur oak
237 Interior ponderosa pine
238 Western juniper
243 Sierra Nevada mixed conifer
244 Pacific ponderosa pine-Douglas-fir
245 Pacific ponderosa pine
246 California black oak
247 Jeffrey pine
248 Knobcone pine
249 Canyon live oak
250 Blue oak-foothills pine
251 White spruce-aspen
252 Paper birch
253 Black spruce-white spruce
254 Black spruce-paper birch
255 California coast live oak
256 California mixed subalpine

109 Ponderosa pine shrubland
201 Blue oak woodland
202 Coast live oak woodland
203 Riparian woodland
204 North coastal shrub
213 Alpine grassland
216 Montane meadows
217 Wetlands
409 Tall forb
410 Alpine rangeland
411 Aspen woodland
413 Gambel oak
418 Bigtooth maple
419 Bittercherry
420 Snowbrush
421 Chokecherry-serviceberry-rose
422 Riparian
801 Savanna
805 Riparian

Vegetation classifications describing plant communities where woods strawberry is a dominant species include:


New Mexico:


South Dakota:


SPECIES: Fragaria vesca
This description provides characteristics that may be relevant to fire ecology, and is not meant for identification. Keys for identification are available (e.g., [27,37,47,48,49,61,62,63,78,79,80,90,99,108, 111,126,134,154,167,172,173,176]).

Woods strawberry is a low-growing, deciduous perennial herb [6,27,37,62,63,72,73,90,99,108,120,126,145,154, 173,175], with petioles and flowering stems typically arising from a single crown in rosette form. Occasionally a single crown may split into 2 or more crowns by the development of an axillary meristem, but production of leaves and flowers is generally restricted to a single meristematic axis in each ramet [6]. Petioles are generally 0.3 to 6.9 inches (0.8-17.5 cm) long [37,78,80,173], with flowering stems often shorter [72]. Leaves are basal and palmately trifoliate [37,62,63,72,78,79,80,90,99,108,120,141,145,154, 173,175], with leaflets 0.5 to 2.6 inches (1.3-6.5 cm) long and 0.5 to 2.8 inches (1.3- 7.0 cm) wide [37,78,108,145,173], the terminal leaflet being largest [37,173]. Flowers of Fragaria vesca ssp. vesca, F. v. ssp. americana, and F. v. ssp. californica are exclusively perfect, while F. v. ssp. bracteata produces occasional female-only plants [146]. Fleshy fruits are up to 0.4 inch (1 cm) thick and covered with 0.05 inch (1.3-1.4 mm) long achenes [37,62,78,80,108,126,173]. Crowns arise from short rhizomes [63,78,90,99,108,126], spreading and forming colonies by stolons that root and produce plantlets at the nodes [37,47,62,63,72,73,78,80,90,99,108,120,126,145, 154,173,175].


Woods strawberry regenerates vegetatively and by seeds, although apparently the "predominant reproductive mode" is vegetative (Tamm 1948, as cited in [22]).

Pollination: According to Ostler and Harper [119], woods strawberry is "animal-pollinated", and flower structure is open with "unrestricted access to nectaries and/or pollen."

Breeding system: Fragaria vesca. ssp. vesca, F. v. ssp. americana, and F. v. ssp. californica have perfect flowers. Fragaria vesca ssp. bracteata is gynodioecious, in which most plants have perfect flowers, but occasionally some plants bear only female flowers [146].

Seed production: No information is available on this topic.

Seed dispersal: Seeds are probably dispersed by birds and mammals (Martin and others 1951, as cited in [3]), [148].

Seed banking: Although information describing longevity of viable, soil-stored woods strawberry seed is sparse, there is some indication that it does develop seed banks ([53] and references contained therein). Laboratory and field research in Europe indicate that viable woods strawberry seeds may persist in soil for at least 5 years [164].

It appears that the woods strawberry seed bank is found close to the soil surface. Kramer and Johnson [94] studied seed banks in Douglas-fir and grand fir forests in west-central Idaho. A total of 19 viable woods strawberry seeds were collected from 12 of 48 stands sampled. Ninety-five percent of viable woods strawberry seeds were found in the 0 to 2 inch (0-5 cm) depth, which was mainly composed of compacted litter and organic layers. Five percent of viable woods strawberry seeds were found in the 2 to 4 inch (5-10 cm) depth, which was predominantly mineral soil [94]. Similarly, of soil samples taken from 3 grand fir-dominated sites in the Blue Mountains of eastern Oregon, 2 sites yielded germinable seeds only from the litter/humus layer, and 1 site only from the 0 to 0.8 inch (0-2 cm) mineral soil layer. No woods strawberry seedlings emerged from the 0.8 to 1.6 inch (2-4 cm) soil samples [156].

Germination: As of this writing (2007) there is little published information describing conditions either favoring or inhibiting woods strawberry seed germination. Steele and Geier-Hayes [151] wrote that woods strawberry "germinates on moist mineral soil in partial shade."

Results from a laboratory experiment suggest that cold stratification may induce more rapid germination of woods strawberry seed but provides a much smaller, perhaps negligible effect on eventual numbers of germinants. Woods strawberry seeds were planted in sterilized soil and overwintered in either a coldframe or a heated greenhouse. Seeds overwintered in coldframes were brought indoors after 83 days and had greater germination (45.5%) compared with seeds from the heated greenhouse (32%). Seeds in the cold frame treatment also germinated more rapidly, between 14 and 56 days, while those in the heated greenhouse required between 48 and 252 days for germination [115].

Seedling establishment/growth: To date (2007), not much information has been published about woods strawberry seedling establishment and growth. However, there is some indication that seedling establishment occurs mainly apart from established populations, perhaps following some type of soil disturbance. A review by Eriksson [53] suggests that seedling establishment in preestablished populations of adult woods strawberry clones is rare, and that seedlings mainly contribute to establishment of new populations apart from established clones. Anecdotal evidence provided by Jurik [88] concurs, noting not only that seedlings do not seem to establish in preexisting populations, but that seedlings were observed only where the original vegetation was removed and mineral soil exposed. Steele and Geier-Hayes [148,150,151] noted that woods strawberry seedling establishment apparently requires bare shaded soil.

Asexual regeneration: Vegetative spread in woods strawberry occurs in 3 ways; although, according to a review by Eriksson [53], woods strawberry vegetative spread is mainly by stolons. Crowns arise from short rhizomes [63,78,90,99,108,126], and stolons arise from axillary buds, with individual ramets producing 1 to 4 stolons per season. Stolons may branch at alternate nodes. The nonbranching nodes produce 1 to 2 small leaves and adventitious root primordia, and will root when contacting moist substratum. Stolons decay over winter. Individual nodes may root up to 3.3 feet (1 m) from the parent ramet. Adventitious roots may also develop in the axils of decayed leaves allowing plants to "creep along the forest floor . . . through the accumulation of several years' decaying leaf bases" [6].

Habitat: Woods strawberry occupies a variety of habitats throughout its range. In the eastern United States and Canada, it commonly occurs in forest or woodland habitats (e.g. [6,51,111,141,154,167]). In the southeastern United States woods strawberry may be largely restricted to the rich, moist forests of the mountains [126,176]. Further north, there are also accounts of its occurrence in more open habitats such as old fields, meadows and grasslands [25,36,116,154]. In the northern Great Plains, woods strawberry is associated with woodland and riparian habitats [63,74].

In western North America, woods strawberry also commonly occurs in, but is not always restricted to, wooded or forested habitats. Although comprehensive surveys are lacking, it appears that woods strawberry can be found in all but the driest forest types in the western United States. Woods strawberry occurrence in forested habitats in this region is often associated with relatively recent disturbance. Examples include forest openings [27,62,72,122], roadsides [71,105], and recently cleared or early successional forest [105] (also see Successional Status below). Woods strawberry occurrence in western North America is also documented in meadows [47,48,49,79,108], open slopes [73,108], prairie-woodland mosaics [57], forest margins [99], and margins of meadows [127]. Reed [129] mentions woods strawberry occurrence in big sagebrush (Artemisia tridentata) habitats in Jackson Hole, Wyoming, although to date (2007) this is the only example encountered for this habitat.

Elevation: In mountainous western North America, woods strawberry occurrence has been reported from a wide range of elevations. Examples of such reports include: "low" to subalpine along the Pacific Northwest coast [122], "low to middle elevations" in Glacier National Park [145], and valley bottom to lower subalpine in west-central Montana [98]. Knight and others [93] indicated that woods strawberry's preferred habitat in the Medicine Bow Mountains of northern Colorado/southern Wyoming is "higher elevation, mesic sites."

The following table lists published accounts of elevation ranges where woods strawberry occurs in western North America. These examples are not necessarily elevational limits to woods strawberry distribution, but rather a range of elevations, particularly upper elevations, where woods strawberry might occur.

Location Elevation
east-central and southeastern Arizona 7,000 to 9,500 feet (2,100-2,900 m) [90]
southeastern Arizona >9,200 feet (2,800 m) [157]
southern Arizona 7,900 to 8,000 feet (2,400 m) [28]
California 100 to 6,500 feet (30-2,000 m) [78]
Sierra Nevada Range, California <6,000 feet (1,800 m) [137]
Colorado 5,000 to 9,500 feet (1,500-2,900 m) [73]
near Crested Butte, Colorado 8,500 to 12,500 feet (2,600-3,800 m) [100]
west-central Idaho 5,000 to 7,800 feet (1,500-2,400 m) [23]
New Mexico 6,500 to 10,000 feet (2,000-3,000 m) [108]
Utah 6,000 to 10,500 feet (1,800-3,200 m) [173]
Uinta Basin, Utah 7,000 to 10,500 feet (2,100-3,200 m) [62]
Cascade and Olympic Mountains, Washington up to 4,000 feet (1,200 m) [79,80]
northwestern Wyoming 7,900 feet (2,400 m) [20]
Intermountain West 5,900 to 7,900 feet (1800-2400 m) [37]
Yellowstone National Park 6,000 to 7,600 feet (1,800-2,300 m) [44]
Baja California "higher foothills to about" 8,200 feet (2,500 m) [175]

The following table provides woods strawberry distribution data by elevation in the Siskiyou Mountains of Oregon and California, and is adapted from [174].

Elevation range (feet) 1,500-2,500 2,500-3,500 3,500-4,500 4,500-5,500 5,500-6,300 6,300-7,000
Percent frequency of occurrence 0.6 1.1 5.9 10.2 7.0 4.5

As of this writing (2007) there is no published information regarding elevation and woods strawberry distribution in eastern North America.

Moisture: Based on general information contained in site descriptions, habitat types, etc., it appears that woods strawberry occurs under a wide range of moisture conditions, although it is probably not tolerant of extremely wet or dry conditions. Although comprehensive, rangewide information about moisture conditions for woods strawberry habitat is lacking, the following descriptions provide some guidelines, at least for parts of the western United States. Lackschewitz [98] indicated that woods strawberry occurs on sites in west-central Montana that are mesic (adequate moisture during all or most of the growing season, but rarely if ever flooded) to meso-xeric (moisture abundant in the early growing season but dry later on). Franklin and Dyrness [57] indicated that woods strawberry is more common in warm, dry forests, less common in cool, moist forests, and rare to nonexistent in cold, moist forests of the South Umpqua River valley, western Oregon.

Although evidence is limited, it appears that woods strawberry is most prevalent in early successional forests in the western United States. Nevertheless, it also appears that it may be found in most, if not all, successional stages of forest development, at least within some western forest types. For example, Antos and Habeck [7] sampled vegetation in grand fir-dominated communities in the Swan Valley, western Montana. Average woods strawberry percent occurrence was significantly (P<0.05) greater in stands less than 90 years old (67%), compared with stands greater than 150 years old (7%) [7]. Habeck [69] also studied succession in western redcedar (Thuja plicata)-western hemlock (Tsuga heterophylla) zone forest communities in Glacier National Park. Woods strawberry exhibited its greatest presence in the earliest stages of succession in this zone, where forests that had established following fire were dominated by Rocky Mountain lodgepole pine (Pinus contorta var. latifolia) and, to a lesser extent, western larch (Larix occidentalis). Woods strawberry diminished in importance in later-successional communities where western redcedar and western hemlock were dominant [69]. Spies [144] found that mean woods strawberry percent frequency of occurrence in the Oregon Cascades was significantly (P<0.05) lower in old-growth (mean age = 395 years) forest stands, compared with mature (mean age = 115 years) or young (mean age = 60 years) stands. However, Steele and Geier-Hayes [147,148,149,150,151,152] characterized woods strawberry as a midseral species in several Douglas-fir- and grand fir-dominated habitat types in Idaho, and Ross and Hunter [135] included woods strawberry among "dominants in the climax vegetation" of the western redcedar-western hemlock association in Montana.

Several sources suggest or demonstrate that woods strawberry presence in western forest habitats is enhanced by disturbance. Hall [70] indicated that wild strawberries tend to increase with site disturbance in the Blue Mountains of eastern Oregon and southeastern Washington. Ferguson and others [55] indicated that woods strawberry increased substantially in response to both partial and total overstory removal in grand fir-dominated sites in northern Idaho and southeastern Oregon. Green and Jensen [64] noted that stands of grand fir (grand fir/wild ginger (Asarum caudatum) habitat type) that were subjected to clearcutting, broadcast burning, and high-intensity mechanical scarification resulted in a woods strawberry-thistle (Cirsium spp.) successional community. Nelson and Halpern [114] studied the responses of understory plants to aggregated retention harvests in 70 to 80-year-old and 110 to 140-year-old Douglas-fir-dominated forests on the western slope of the Cascade Range, southwestern Washington. Aggregates were 2.5 acres (1 ha), with 5 aggregates retained per 32-acre (13 ha) harvest unit. Sampling did not detect woods strawberry in preharvest plots of either the harvested or retention treatments, nor in postharvest retention units 1 to 2 years after cutting. However, woods strawberry was sampled at 3% frequency in harvested areas, with mean cover less than 0.05% [114]. A thinning experiment in a central Colorado Rocky Mountain lodgepole pine forest showed that woods strawberry cover was significantly (P<0.05) greater 5 years after heavy thinning (average basal area 30 ft²/acre), compared with moderate thinning (58 ft²/acre), light thinning (73 ft²/acre), and unthinned controls (basal area not reported) [39].

It is not clear if observed increases in woods strawberry associated with site disturbance are due to seedling establishment that is promoted by litter layer and soil disturbance (see Seedling Establishment/Growth). It is also possible that extant woods strawberry populations are released from competition for light by disturbance-induced changes in canopy structure, and expand their coverage by vegetative spread (see Asexual Regeneration). Although Kemball and others [91] considered woods strawberry to be shade intolerant, Steele and Geier-Hayes [149] indicated that woods strawberry is more shade tolerant than many of the early seral herb-layer species with which it is often associated in Idaho forests, and that it, along with Virginia strawberry, achieves its greatest coverage "beneath a light canopy of trees or tall shrubs where partial shade has reduced competition from earlier successional herbs" [147].

The following table lists some examples of woods strawberry flowering phenology from throughout North America:

Location March April May June July August September
east-central/southeastern Arizona [90]     X X X X X
near Moscow, Idaho [83]     X X      
northern Idaho [120]   X X X      
Illinois [111]     X X X X  
New Mexico [108]   X X X X X X
western North Carolina [126]     X X X    
western Oregon/southwestern  Washington [72]   X X X      
Uinta Basin, Utah [62]       X X    
West Virginia [155]   X X X      
Blue Ridge Mountains [176]     X X X    
northern Great Plains [63]   X X        
Intermountain West [37]       X X    
New England [141]     X X      
northeastern United States [61]   X X X      
coastal, New York to Newfoundland [51]   X X X X    
Baja California [175] X X X X      

Reported dates for ripe fruits include mid-June to early August near Moscow, Idaho [83], and by early July in central New York [6]. Stolon production occurs from early June to late August in central New York [6] and early May through August near Ithaca, New York [88]. Stolon decay begins in late summer and connection between nodes is usually lost by spring, at least in central New York [6].

Leaf production occurs continuously from April to October in central New York, and a few leaves may overwinter [6]. Steele and Geier-Hayes [150,151] also reported that at least some woods strawberry leaves remain green through the winter in Idaho.

Schmidt and Lotan [139] reported the following phenological data for woods strawberry from locations east of the Continental Divide in Montana and in Yellowstone National Park, 1928-1937:

  First appearance Leaves full grown Flowers start Flowers end Fruits ripe Seed fall starts Leaves start to color Leaves fallen
Average date 5/7 6/8 6/10 7/5 8/3 8/12 8/29 9/24
Earliest date 4/20 5/10 5/10 6/29 7/21 8/1 8/5 9/1
Latest date 5/17 7/22 6/24 7/16 8/15 8/25 9/16 10/16


SPECIES: Fragaria vesca
Fire adaptations: Several sources indicate that woods strawberry is adapted to survive low- to moderate-severity fires via subsurface perennating buds. Powell [124] suggested that woods strawberry survives "cool" fires via stolons that are sequestered in unburned litter and duff layers. Brown and Debyle [29] considered woods strawberry a fire endurer, which Rowe [136] classed as those plants able to resprout after the passage of fire. Wang and Kimball [170] included woods strawberry in the postfire regeneration strategy class sprouter (regenerated from surface or buried buds) following a wildfire in a southeastern Manitoba boreal mixedwood forest.

There is also some suggestion that, at least at the population level, woods strawberry is adapted to fire-prone habitats due to a propensity for postfire seedling establishment. In a study of postfire plant cover in northeastern Oregon, Johnson [85] indicated that in postfire year 5, woods strawberry established by seed dispersed from outside the measurement plots in a grand fir-pinegrass habitat type. Suggestions that woods strawberry seedling establishment is generally benefited by some type of disturbance (see Seedling Establishment and Growth and Successional Status) also supports the hypothesis that woods strawberry seedling establishment is promoted by fire. In addition, Strickler and Edgerton [156] suggested that heat may promote woods strawberry seed germination, but a small sample size provided limited experimental evidence.

Although several sources have suggested that seedling establishment and vegetative spread typically do not occur together concurrently, at least within established populations (see Seedling Establishment and Growth), Ahlgren [3,4] observed both woods strawberry seedling establishment and vegetative sprouting, in about equal numbers, in postfire experiment plots in northeastern Minnesota.

Fire regimes: As of this writing (2007), there is little published information linking woods strawberry with specific fire regimes. To the extent that woods strawberry benefits from fire (see Fire Effects), and to the extent that other postfire site characteristics are suitable for its occurrence, it is reasonable to suggest that woods strawberry is likely to be found in areas that experience moderately frequent, relatively low-severity fires. For example, Atzet and McCrimmon [15] described the fire regime of an Oregon white oak/woods strawberry habitat type in the southern Oregon Cascades as follows: "Fire occurred on three of the four sites sampled. Frequency is high, intensity is low, and many fires are confined to the type, without entering adjacent dense forest sites. Spread rates are moderated by the gentle topography. Heavy fuel production is low, but flashy fuels (grasses) are abundant and dry early in the summer. Vertical and horizontal fuel distribution is discontinuous and varied. Surface area, except for the grasses, is low" [15].

This is not to suggest that woods strawberry does not occur in areas with starkly different fire regimes than described above. For instance, it may be found in plant communities and ecosystems where the predominant disturbance type is something other than fire, such as windthrow, that may nevertheless benefit woods strawberry (see Successional Status). Given its apparent ubiquity across North America (see Distribution and Occurrence), fire regime is likely just one of many factors influencing woods strawberry occurrence and abundance.

The following table provides fire return intervals for plant communities and ecosystems where woods strawberry likely occurs (although precise distribution information is limited). Find fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find Fire Regimes".

Community or Ecosystem Dominant Species Fire Return Interval Range (years)
silver fir-Douglas-fir Abies amabilis-Pseudotsuga menziesii var. menziesii >200
grand fir Abies grandis 35-200 [11]
maple-beech Acer-Fagus spp. 684-1,385 [34,168]
maple-beech-birch Acer-Fagus-Betula spp. >1,000
silver maple-American elm Acer saccharinum-Ulmus americana <5 to 200
sugar maple Acer saccharum >1,000
sugar maple-basswood Acer saccharum-Tilia americana >1,000 [168]
birch Betula spp. 80-230 [160]
California montane chaparral Ceanothus and/or Arctostaphylos spp. 50-100 [121]
sugarberry-America elm-green ash Celtis laevigata-Ulmus americana-Fraxinus pennsylvanica <35 to 200 [168]
mountain-mahogany-Gambel oak scrub Cercocarpus ledifolius-Quercus gambelii <35 to <100 [121]
Atlantic white-cedar Chamaecyparis thyoides 35 to >200
beech-sugar maple Fagus spp.-Acer saccharum >1,000
black ash Fraxinus nigra <35 to 200 [168]
green ash Fraxinus pennsylvanica <35 to >300 [52,168]
western juniper Juniperus occidentalis 20-70
Rocky Mountain juniper Juniperus scopulorum <35 [121]
cedar glades Juniperus virginiana 3-22 [68,121]
tamarack Larix laricina 35-200 [121]
western larch Larix occidentalis 25-350 [12,18,42]
yellow-poplar Liriodendron tulipifera <35 [168]
Great Lakes spruce-fir Picea-Abies spp. 35 to >200
northeastern spruce-fir Picea-Abies spp. 35-200 [50]
Engelmann spruce-subalpine fir Picea engelmannii-Abies lasiocarpa 35 to >200 [11]
black spruce Picea mariana 35-200
conifer bog* Picea mariana-Larix laricina 35-200 [50]
blue spruce* Picea pungens 35-200 [11]
red spruce* Picea rubens 35-200 [50]
Rocky Mountain bristlecone pine P. aristata 9-55 [45,46]
whitebark pine* Pinus albicaulis 50-200 [1,9]
jack pine Pinus banksiana <35 to 200 [34,50]
Rocky Mountain lodgepole pine* Pinus contorta var. latifolia 25-340 [17,18,161]
Sierra lodgepole pine* Pinus contorta var. murrayana 35-200 [11]
shortleaf pine Pinus echinata 2-15
shortleaf pine-oak Pinus echinata-Quercus spp. <10 [168]
Jeffrey pine Pinus jeffreyi 5-30
western white pine* Pinus monticola 50-200
Pacific ponderosa pine* Pinus ponderosa var. ponderosa 1-47 [11]
interior ponderosa pine* Pinus ponderosa var. scopulorum 2-30 [11,16,101]
Arizona pine Pinus ponderosa var. arizonica 2-15 [16,35,140]
red pine (Great Lakes region) Pinus resinosa 3-18 (x=3-10) [33,58]
red-white pine* (Great Lakes region) Pinus resinosa-P. strobus 3-200 [34,75,106]
pitch pine Pinus rigida 6-25 [30,76]
eastern white pine Pinus strobus 35-200
eastern white pine-eastern hemlock Pinus strobus-Tsuga canadensis 35-200
eastern white pine-northern red oak-red maple Pinus strobus-Quercus rubra-Acer rubrum 35-200
loblolly pine Pinus taeda 3-8
loblolly-shortleaf pine Pinus taeda-P. echinata 10 to <35
Virginia pine Pinus virginiana 10 to <35
Virginia pine-oak Pinus virginiana-Quercus spp. 10 to <35
sycamore-sweetgum-American elm Platanus occidentalis-Liquidambar styraciflua-Ulmus americana <35 to 200 [168]
eastern cottonwood Populus deltoides <35 to 200 [121]
aspen-birch Populus tremuloides-Betula papyrifera 35-200 [50,168]
quaking aspen (west of the Great Plains) Populus tremuloides 7-120 [11,66,110]
black cherry-sugar maple Prunus serotina-Acer saccharum >1,000 [168]
mountain grasslands Pseudoroegneria spicata 3-40 (x=10) [10,11]
Rocky Mountain Douglas-fir* Pseudotsuga menziesii var. glauca 25-100 [11,13,14]
coastal Douglas-fir* Pseudotsuga menziesii var. menziesii 40-240 [11,112,131]
California mixed evergreen Pseudotsuga menziesii var. menziesii-Lithocarpus densiflorus-Arbutus menziesii <35
California oakwoods Quercus spp. <35 [11]
oak-hickory Quercus-Carya spp. <35
northeastern oak-pine Quercus-Pinus spp. 10 to <35
white oak-black oak-northern red oak Quercus alba-Q. velutina-Q. rubra <35 [168]
canyon live oak Quercus chrysolepis <35 to 200
blue oak-foothills pine Quercus douglasii-P. sabiniana <35 [11]
northern pin oak Quercus ellipsoidalis <35 [168]
Oregon white oak Quercus garryana <35 [11]
bear oak Quercus ilicifolia <35 [168]
California black oak Quercus kelloggii 5-30 [121]
bur oak Quercus macrocarpa <10 [168]
oak savanna Quercus macrocarpa/Andropogon gerardii-Schizachyrium scoparium 2-14 [121,168]
chestnut oak Quercus prinus 3-8
northern red oak Quercus rubra 10 to <35
post oak-blackjack oak Quercus stellata-Q. marilandica <10
black oak Quercus velutina <35 [168]
redwood Sequoia sempervirens 5-200 [11,56,158]
western redcedar-western hemlock Thuja plicata-Tsuga heterophylla >200 [11]
eastern hemlock-yellow birch Tsuga canadensis-Betula alleghaniensis 100-240 [160,168]
eastern hemlock-white pine Tsuga canadensis-Pinus strobus x=47 [34]
western hemlock-Sitka spruce Tsuga heterophylla-Picea sitchensis >200
mountain hemlock* Tsuga mertensiana 35 to >200 [11]
*fire return interval varies widely; trends in variation are noted in the species review

Surface rhizome/chamaephytic root crown in organic mantle or on soil surface
Caudex/herbaceous root crown, growing points in soil
Ground residual colonizer (on-site, initial community)
Initial off-site colonizer (off-site, initial community)
Secondary colonizer (on-site or off-site seed sources)


SPECIES: Fragaria vesca
Although detailed accounts are lacking, it is likely that woods strawberry is top-killed by fire. It is also apparent that woods strawberry survives fire when meristematic tissues are protected from heat damage by moist soil and duff layers [124] (also see Fire adaptations). Using the nomenclature of Volland and Dell [166], Powell [124] indicated that woods strawberry has a fire resistance rating of medium (35% to 64% chance that 50% of the population will survive or immediately reestablish after passage of a fire with an average flame length of 12 inches (0.3 m)). Patterson and others [120] characterized its "resistance" to fire as "moderate to low".

No additional information is available on this topic.

Several studies have demonstrated an increase in woods strawberry populations following fire (see Discussion and Qualification of Plant Response below). Although published accounts indicate that, in general, woods strawberry populations increase following disturbance, including fire, to date (2007) there are no studies that explicitly compare the importance of vegetative spread with seedling establishment in postdisturbance population growth (see Successional Status). Ahlgren [3,4] observed both woods strawberry seedling establishment and vegetative sprouting, in about equal numbers, in postfire experiment plots in northeastern Minnesota.

To the extent that woods strawberry plants can survive fire, or that seedlings can establish in the postfire environment, it is apparent that fire can have a positive effect on woods strawberry populations. A review by Patterson and others [120] indicated that it regenerates from stolons following fire, reaching preburn levels within 3 to 7 years. Using the nomenclature of Volland and Dell [166], Powell [124] rated woods strawberry postfire response as medium, suggesting it will regain its preburn frequency or cover in 5 to 10 years.

While some studies indicate greater abundance of woods strawberry on burned versus unburned plots [113,118], other studies indicate an initial postfire decrease in woods strawberry abundance [104,159] and/or an increase in abundance 3 or more years after fire [2,117,154]. Still others report more equivocal results (e.g., [3,96]). Reported differences may be due to a number of factors, including differences in sampling protocols. For example, some studies compare paired burned and unburned plots at some time after fire, while others compare prefire abundance to postfire abundance over varying numbers of years. Additionally, some studies suggest a correlation between fire severity and woods strawberry response [19,20,82,143], while fire severity estimates are not consistently reported in other studies. It should also be noted that other factors besides fire severity may affect species-specific postfire response. Hypothetically, factors such as the character of the competing vegetation, herbivory, and additional disturbance such as flooding/debris flow may interact with the effects of fire. Interactions between such factors can confound interpretation of postfire data, leading to ambiguous results.

Two studies demonstrate greater woods strawberry presence on burned sites, compared with adjacent unburned habitat. Ten to 11 years after a 1945 wildfire in the Oregon Coast Range, frequency of woods strawberry in burned quadrats was 9%, while none was sampled in unburned forest. The unburned forest was estimated at around 300 years old, composed mainly of Douglas-fir succeeding to western hemlock. Burn characteristics were not well described, although it was apparently a predominantly stand-replacing fire [113]. Similarly, woods strawberry was most prevalent (7% cover; 40% frequency) in a 4-year-old burned stand compared to mature (230 to 320 years old) and second-growth (53 to 80 years old) stands in Douglas-fir-western hemlock/Pacific rhododendron (Rhododendron macrophyllum) communities on the Olympic Peninsula, Washington. Although no details were provided about burn conditions, vegetation data indicate that it was a stand-replacing fire in what was previously mature forest. Woods strawberry was not present in any of the 13 sampled stands of mature forest. It was present but sparse (<1% cover and frequency) in 3 second-growth stands. It was not clear what type of disturbance initiated the second-growth stands [118].

Other studies show a reduction in woods strawberry in burned plots compared with unburned plots in early postfire years. Three years after the 1979 Ship Island Burn in the Middle Fork Salmon River drainage, central Idaho, woods strawberry cover was significantly (P<0.05) lower in burned plots compared with paired unburned plots [159]. Leege and Godbolt [104] studied herbaceous response to prescribed burning and grass-seeding treatments to improve elk winter range in shrub-dominated habitat in north-central Idaho. Prescribed burning was conducted in mid-May, and all vegetation sampling took place in July or August. General burn conditions are provided in [104], but information concerning fire behavior or severity was not. Their data show woods strawberry was less frequent on burned plots than unburned plots.

Woods strawberry frequency of occurrence within each of ten 2-foot (61 cm) diameter circular measurement plots, 1 year prior to burning and 1, 2, and 4 years after burning (adapted from [104])
  Before 1st 2nd 4th
Unburned 5 5 7 8
Burned 7 2 4 6

Woods strawberry populations in postfire plots in these 2 studies may still have been recovering. It is unknown whether woods strawberry frequency increased on these sites in subsequent years.

Some studies indicate that populations of woods strawberry generally remain relatively low in the early postfire environment and begin increasing after 2 or more years [2,117,154]. These studies do not, however, provide information on abundance of woods strawberry before fire or in paired unburned plots. Following the Little Sioux Wildfire in northeastern Minnesota in 1971, vegetation data were collected from seventy 0.605 m² plots each August for 5 years. No other information about the fire was provided [117].

Total number of woods strawberry plants sampled each August after a 1971 wildfire in northeastern Minnesota [117]
1971 1972 1973 1974 1975
6 0 3 53 51

Ahlgren [2] suggested that in forests of the north-central United States and adjacent central Canada, woods strawberry increases gradually for several years following fire, peaking during the 5- to 10-year postfire period, and subsequently declining.

Average percent cover of woods strawberry in “burned-over jack pine (Pinus banksiana)-black spruce (Picea mariana) forests in northeastern Minnesota at different intervals after fire" (adapted from [2])
Years after fire 1 2 3 4 5 10 15 20 30 50 80
Average percent cover (%) 1 2 2 3 4 5 1 1 1 1 1

Twenty years of woods strawberry cover data were collected each July following the Plant Creek wildfire that burned in late August 1972 in the Sapphire Range, western Montana. These data indicate that woods strawberry was absent for 3 to 17 years following the fire, but eventually established in 9 of 10 study areas. Woods strawberry cover never exceeded 5% on any study area during this time. Prefire data were not provided, so it is not known if these populations were of sprout or seed origin [154].

Number of postfire study areas (out of 10 total) containing woods strawberry (adapted from [154]).
Postfire year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of study areas 0 0 0 2 2 3 2 4 4 4 4 6 3 5 6 5 5 6 8 7

Another study showed conflicting results. Postfire response of woods strawberry differed between 2 northern Minnesota mixed conifer-hardwood forest sites. One site was a 10-year-old jack pine plantation burned by wildfire in a late April 1952, and the other site was dominated by jack pine and black spruce and burned by wildfire in July 1955. An unburned mixed conifer-hardwood site, dominated by black spruce, jack pine, and paper birch, served as a contol. Little information about fire behavior or burn conditions was provided, although the authors noted that "little or no soil burn occurred" [96].

Woods strawberry percent frequency within thirty 10 m² plots on each site (adapted from [96])
Mixed conifer-hardwood (unburned) Jack pine (years after burn) Jack pine-black spruce (years after burn)
1956 1965 1954 (3) 1956 (5) 1965 (14) 1956 (2) 1959 (5) 1965 (11)
3 3 27 33 0 0 7 43

Fire severity, particularly fire residence time and magnitude of the downward heat pulse associated with the fire, is likely to impact woods strawberry survival and postfire response. Greater fire severity is associated with increased duff consumption, greater soil heating, and consequently, reduced woods strawberry survival. For example, Hooker and Tisdale [82] indicated that woods strawberry increased following "low intensity" prescribed fire in a northern Idaho shrubland, but did not "benefit" from "more intense" fire. On shelterwood cutting units in a northern Idaho mixed conifer forest, woods strawberry postfire year 1 cover was slightly lower on a site burned under dry fuel conditions than on a site burned under moist fuel conditions. Differences in fuel moisture between treatments were primarily attributable to duff moisture levels (88% for the moist treatment; 41% for the dry treatment). Average duff consumption was 30% for the moist burn, compared with 90% for the dry burn, indicating higher fire severity on the dry burn site. More detailed burn conditions and fire behavior information are available in [143].

Woods strawberry cover during summer just prior to treatment and 1 year after burning (adapted from [143])
  Preburn Postburn
No burn 1.1 1.2
Moist burn 1.3 0.9
Dry burn 1.1 0.4

Following prescribed fires in western Wyoming quaking aspen (Populus tremuloides) communities, woods strawberry biomass decreased with increasing severity 3 years after fire. This pattern was less consistent in postfire year 12 [19,20].

Woods strawberry production before, 3 years after, and 12 years after fires of varied severitya (adapted from [19,20]). Prefire production was 108 kg/ha.
Years after fire 3 12
Light 94 kg/ha 75 kg/ha
Moderate 78 kg/ha 14 kg/ha
Heavy 51 kg/ha 45 kg/ha
a Light burns indicate an estimated 0% to 20% of litter and duff consumed
Moderate burns indicate an estimated 20% to 80% of litter and duff consumed
Heavy burns indicate an estimated 81% to 100% of litter and duff consumed

Further evidence linking fire severity with woods strawberry's postfire response is provided by Wang and Kimball [170], who examined vegetation response following a wildfire in a boreal mixedwood forest codominated by quaking aspen and a mixture of balsam fir (Abies balsamea), white spruce (Picea glauca), black spruce and/or jack pine.

Average woods strawberry cover and frequency over 4 postfire years [170]
  cover frequency
Scorcheda <0.1% 3%
Lightly burnedb 0.1% 1%
Severely burnedc 0 0
aScorched indicates litter not burned or partially burned
bLightly burned indicates litter burned but with little to no duff consumption
cSeverely burned indicates forest floor completely consumed; organic matter in upper mineral soil horizon may also be partially consumed

Two northern Minnesota studies also indicate a stronger woods strawberry postfire response when fire is less severe. At 2 jack pine forest sites that were logged and then burned 1 year later, frequency of woods strawberry was similar before cutting and burning (80-83%) but differed between sites after treatment. Differences in fire severity might explain lower frequency of woods strawberry at the Grass Lake site (3-13%, 1-2 years after fire) compared with the East Bearskin Lake site (57-83%, 1-2 years after fire). Temperatures reached at the soil surface were, on average, greater than 900° F (480° C) at the Grass Lake site and less than that at the East Bearskin Lake site [4]. In another northern Minnesota study conducted in several forest types, woods strawberry frequency tended to be higher on burned versus unburned plots, although frequency was lower on a severe burn versus a burn of moderate severity at one site [3]. Lack of prefire information and mixed sampling approaches among sites make results from this study difficult to interpret.

On ponderosa pine and Douglas-fir communities in the Blue Mountains of northeastern Oregon, woods strawberry cover and frequency were higher on unburned control sites than on prescribed burned, thinned, or thinned-and-burned sites. Woods strawberry was determined to be an indicator species for unburned sites (P0.05). For further information on the effects of thinning and burning treatments on woods strawberry and 48 other species, see the Research Project Summary of Youngblood and others' [177] study.

These fire studies also provide information on postfire responses of plant species in communities that include woods strawberry:

As of this writing (2007) there is little published information specifically concerning the simultaneous management of woods strawberry and fire. It should be noted that woods strawberry occurs within a variety of plant communities and ecosystems that represent many types of fire regimes.

It has been suggested that woods strawberry might be an important species for mitigating postfire erosion potential. From observations of postfire shrubfields in northern Idaho, Hooker and Tisdale [82] wrote that woods strawberry "appeared to have an important stabilizing influence on the surface soils of the steeper slopes, since it was abundant after burning and sent out numerous stolons."


SPECIES: Fragaria vesca
Several native ungulates are known to graze woods strawberry foliage. Elk utilize it as summer forage in central Washington [26] and spring forage in northern Idaho [103]. Campbell and Johnson [31] provided evidence for year-round mountain goat and mule deer grazing on wild strawberries in north-central Washington. Woods strawberry was consumed by white-tailed deer in grand fir/queencup beadlily (Clintonia uniflora) and western redcedar/queencup beadlily habitat types in northern Idaho [92].

Tame mule deer utilized woods strawberry in Utah and Colorado. In a lodgepole pine-dominated forest area in northeastern Utah, woods strawberry constituted 5% by weight of the summer diet of tame mule deer in clearcut forest and mature forest habitats [43]. Tame mule deer utilized small amounts of woods strawberry in lodgepole pine and Englemann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) habitats in central Colorado in summer [169]. In an experiment on a central Colorado ponderosa pine/bunchgrass range, observations of grazing preferences of tame mule deer indicated that woods strawberry was among preferred food species. Average percent of mule deer diet comprised of woods strawberry was as follows [40]:

Average monthly use April May June July August October
3.8% 0% 0.8% 4.0% 6.5% 6.1% 5.5%

Woods strawberry is also eaten by other native mammals, including grizzly bears [41], black bears [150,151], and raccoons [132], although it is unclear if these animals are eating strictly fruit, or if they are also utilizing foliage.

Fruits are eaten by grouse and songbirds [83,150,151]. Wild strawberry is "perhaps the most important herbaceous food plant for" ruffed grouse in Minnesota [67]. Hungerford [83] suggested that it was an important food for ruffed grouse in Idaho.

Palatability/nutritional value: According to Steele and Geier-Hayes [150,151] woods strawberry is moderately palatable to deer, elk and sheep. Its leaves remain "green through the winter" and provide a higher forage value "than most herb layer species during that season."

Cover value: No information is available on this topic.

There are suggestions that woods strawberry might be important for stabilizing steep slopes following fire [82] (see Fire Management Considerations).

Several sources note the widespread harvesting of wild strawberry fruit, both in traditional and contemporary cultures [32,72,105,122]. Native Americans mashed wild strawberry fruit with serviceberries to form dried cakes, used stolons for tying and binding, applied dried and powdered leaves to open sores as disinfectant [72], made the leaves into a medicinal tea [120,122], and chewed and applied the leaves as a poultice to burns [122].

Published information provides conflicting evidence concerning woods strawberry grazing tolerance. Hall [70] reported that wild strawberries tended to increase with overgrazing in the Blue Mountains of eastern Oregon and southeastern Washington. Steele and Geier-Hayes [147,148,149] indicated that, on "cutover" sites in grand fir- and Douglas-fir-dominated habitat types in Idaho, woods strawberry was less tolerant of heavy grazing than either Virginia strawberry or other common grazing-tolerant forbs. It was also suggested that woods strawberry is susceptible to trampling from heavy livestock traffic [147,148,149]. In northern California, Saenz [138] recorded the presence of woods strawberry in "lightly" grazed (only grazed "late in the season" by cattle) Oregon white oak woodland, but it was not observed in "heavily" grazed (grazed by cattle "for as much of the year as weather permitted") woodland, nor in "lightly" grazed or "heavily" grazed grassland.

In meadow habitat surrounded by ponderosa pine (Pinus ponderosa) forest on the Mogollon Rim, northern Arizona, exclusion of grazing by cattle, elk and deer had no consistent effect on relative abundance of woods strawberry. Comparisons were made between grazed plots and fenced exclosure plots where there had been no grazing for 8 to 9 years. Woods strawberry "relative abundance (%)" ranged from 0 to 6.5%, with no discernable effect of grazing among 3 sites.

A study on the Rogue River National Forest, Oregon, suggests that on logged sites where woods strawberry is present, removing slash (in this case piling and burning) results in greater woods strawberry presence, compared with leaving slash in place [109].

Limited evidence suggests that woods strawberry may be relatively resistant to some herbicides. Rice and Toney [130] studied the effects of herbicide treatments for controlling spotted knapweed (Centaurea maculosa) on native forest and grassland vegetation in west-central Montana. At a single site, woods strawberry occurrence was not significantly (P=0.67) different in untreated plots and plots treated once with either picloram or clopyralid [130]. It also does not appear particularly susceptible to glyphosate [24]. Caution should be observed when making assumptions about effects of specific herbicides, application rates, and repeated applications on woods strawberry.

Fragaria vesca: REFERENCES

1. Agee, James K. 1994. Fire and weather disturbances in terrestrial ecosystems of the eastern Cascades. Gen. Tech. Rep. PNW-GTR-320. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 52 p. [Hessburg, Paul F., tech. ed. Eastside forest ecosystem health assessment. Vol. 3: assessment]. [23656]
2. Ahlgren, C. E. 1974. Effects of fires on temperate forests: north central United States. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 195-223. [7198]
3. Ahlgren, Clifford E. 1960. Some effects of fire on reproduction and growth of vegetation in northeastern Minnesota. Ecology. 41(3): 431-445. [207]
4. Ahlgren, Clifford E. 1966. Small mammals and reforestation following prescribed burning. Journal of Forestry. 64: 614-618. [206]
5. Alexander, Billy G., Jr.; Fitzhugh, E. Lee; Ronco, Frank, Jr.; Ludwig, John A. 1987. A classification of forest habitat types of the northern portion of the Cibola National Forest, New Mexico. Gen. Tech. Rep. RM-143. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 35 p. [4207]
6. Angevine, Mark A. 1983. Variations in the demography of natural populations of the wild strawberries Fragaria vesca and Fragaria virginiana. Journal of Ecology. 71(3): 959-974. [62137]
7. Antos, J. A.; Habeck, J. R. 1981. Successional development in Abies grandis (Dougl.) Forbes forests in the Swan Valley, western Montana. Northwest Science. 55(1): 26-39. [12445]
8. Aplet, G. H.; Anderson, S. J.; Stone, C. P. 1991. Association between feral pig disturbance and the composition of some alien plant assemblages in Hawaii Volcanoes National Park. Vegetatio. 95: 55-62. [19600]
9. Arno, Stephen F. 1976. The historical role of fire on the Bitterroot National Forest. Res. Pap. INT-187. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 29 p. [15225]
10. Arno, Stephen F. 1980. Forest fire history in the Northern Rockies. Journal of Forestry. 78(8): 460-465. [11990]
11. Arno, Stephen F. 2000. Fire in western forest ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 97-120. [36984]
12. Arno, Stephen F.; Fischer, William C. 1995. Larix occidentalis--fire ecology and fire management. In: Schmidt, Wyman C.; McDonald, Kathy J., comps. Ecology and management of Larix forests: a look ahead: Proceedings of an international symposium; 1992 October 5-9; Whitefish, MT. Gen. Tech. Rep. GTR-INT-319. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 130-135. [25293]
13. Arno, Stephen F.; Gruell, George E. 1983. Fire history at the forest-grassland ecotone in southwestern Montana. Journal of Range Management. 36(3): 332-336. [342]
14. Arno, Stephen F.; Scott, Joe H.; Hartwell, Michael G. 1995. Age-class structure of old growth ponderosa pine/Douglas-fir stands and its relationship to fire history. Res. Pap. INT-RP-481. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 25 p. [25928]
15. Atzet, Thomas; McCrimmon, Lisa A. 1990. Preliminary plant associations of the southern Oregon Cascade Mountain province. Grants Pass, OR: U.S. Department of Agriculture, Forest Service, Siskiyou National Forest. 330 p. [12977]
16. Baisan, Christopher H.; Swetnam, Thomas W. 1990. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, U.S.A. Canadian Journal of Forest Research. 20: 1559-1569. [14986]
17. Barrett, Stephen W. 1993. Fire regimes on the Clearwater and Nez Perce National Forests north-central Idaho. Final Report: Order No. 43-0276-3-0112. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory. Unpublished report on file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 21 p. [41883]
18. Barrett, Stephen W.; Arno, Stephen F.; Key, Carl H. 1991. Fire regimes of western larch - lodgepole pine forests in Glacier National Park, Montana. Canadian Journal of Forest Research. 21: 1711-1720. [17290]
19. Bartos, D. L.; Mueggler, W. F. 1981. Early succession in aspen communities following fire in western Wyoming. Journal of Range Management. 34(4): 315-318. [5100]
20. Bartos, Dale L.; Brown, James K.; Booth, Gordon D. 1994. Twelve years biomass response in aspen communities following fire. Journal of Range Management. 47: 79-83. [22891]
21. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434]
22. Bierzychudek, Paulette. 1982. Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytologist. 90: 757-776. [19197]
23. Bingham, Richard T. 1987. Plants of the Seven Devils Mountains of Idaho--an annotated checklist. General Technical Report INT-219. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 146 p. [447]
24. Biring, B. S.; Hays-Byl, W. J.; Hoyles, S. E. 1999. Twelve-year conifer and vegetation responses to discing and glyphosate treatments on a BWBSmw backlog site. Working Paper 43. Victoria, BC: British Columbia Ministry of Forests, Research Branch. 34 p. [41236]
25. Blatt, S. E.; Crowder, A.; Harmsen, R. 2005. Secondary succession in two south-eastern Ontario old-fields. Plant Ecology. 177: 25-41. [54319]
26. Boltz, Michael John. 1979. Impacts of prescribed burns and clearcuts upon summer elk food habits, diet quality, and distribution in central Washington. Pullman, WA: Washington State University. 129 p. Thesis. [60992]
27. Booth, W. E.; Wright, J. C. 1962. [Revised]. Flora of Montana: Part II--Dicotyledons. Bozeman, MT: Montana State College, Department of Botany and Bacteriology. 280 p. [47286]
28. Bowers, Janice E.; McLaughlin, Steven P. 1987. Flora and vegetation of the Rincon Mountains, Pima County, Arizona. Desert Plants. 8(2): 50-94. [495]
29. Brown, James K.; DeByle, Norbert V. 1989. Effects of prescribed fire on biomass and plant succession in western aspen. Res. Pap. INT-412. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 16 p. [9286]
30. Buchholz, Kenneth; Good, Ralph E. 1982. Density, age structure, biomass and net annual aboveground productivity of dwarfed Pinus rigida Moll. from the New Jersey Pine Barren Plains. Bulletin of the Torrey Botanical Club. 109(1): 24-34. [8639]
31. Campbell, Erick G.; Johnson, Rolf L. 1983. Food habits of mountain goats, mule deer, and cattle on Chopaka Mountain, Washington, 1977-1980. Journal of Range Management. 36(4): 488-491. [44985]
32. Chesnut, V. K. 1902. Plants used by the Indians of Mendocino County, California. Contributions from the U.S. National Herbarium. [Washington, DC]: U.S. Department of Agriculture, Division of Botany. 7(3): 295-408. [54917]
33. Clark, James S. 1990. Fire and climate change during the last 750 yr in northwestern Minnesota. Ecological Monographs. 60(2): 135-159. [11650]
34. Cleland, David T.; Crow, Thomas R.; Saunders, Sari C.; Dickmann, Donald I.; Maclean, Ann L.; Jordan, James K.; Watson, Richard L.; Sloan, Alyssa M.; Brosofske, Kimberley D. 2004. Characterizing historical and modern fire regimes in Michigan (USA): a landscape ecosystem approach. Landscape Ecology. 19: 311-325. [54326]
35. Cooper, Charles F. 1960. Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecological Monographs. 30(2): 129-164. [3927]
36. Core, Earl L. 1929. Plant ecology of Spruce Mountain, West Virginia. Ecology. 10(1): 1-13. [9218]
37. Cronquist, Arthur; Holmgren, Noel H.; Holmgren, Patricia K. 1997. Intermountain flora: Vascular plants of the Intermountain West, U.S.A. Vol. 3, Part A: Subclass Rosidae (except Fabales). New York: The New York Botanical Garden. 446 p. [28652]
38. Crouch, Glenn L. 1985. Effects of clearcutting a subalpine forest in central Colorado on wildlife habitat. Res. Pap. RM-258. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 12 p. [8225]
39. Crouch, Glenn L. 1986. Effects of thinning pole-sized lodgepole pine on understory vegetation and large herbivore activity in central Colorado. Res. Pap. RM-268. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 10 p. [8353]
40. Currie, P. O.; Reichert, D. W.; Malechek, J. C.; Wallmo, O. C. 1977. Forage selection comparisons for mule deer and cattle under managed ponderosa pine. Journal of Range Management. 30(5): 352-356. [4697]
41. Davis, Dan; Butterfield, Bart. 1991. The Bitterroot Grizzly Bear Evaluation Area: A report to the Bitterroot Technical Review Team. Unpublished report on file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 56 p. [30041]
42. Davis, Kathleen M. 1980. Fire history of a western larch/Douglas-fir forest type in northwestern Montana. In: Stokes, Marvin A.; Dieterich, John H., tech. coords. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 69-74. [12813]
43. Deschamp, Joseph A.; Urness, Philip J.; Austin, Dennis D. 1979. Summer diets of mule deer from lodgepole pine habitats. Journal of Wildlife Management. 43(1): 154-161. [4524]
44. Despain, Don G. 1990. Yellowstone vegetation: Consequences of environment and history in a natural setting. Boulder, CO: Roberts Rinehart, Inc. 239 p. [19374]
45. Donnegan, Joseph A. 1999. Climatic and human influences on fire regimes in Pike National Forest. Boulder, CO: University of Colorado. 122 p. Dissertation. [40456]
46. Donnegan, Joseph A.; Veblen, Thomas T.; Sibold, Jason S. 2001. Climatic and human influences on fire history in Pike National Forest, central Colorado. Canadian Journal of Forest Research. 31: 1526-1539. [43091]
47. Dorn, Robert D. 1977. Flora of the Black Hills. Cheyenne, WY: Robert D. Dorn and Jane L. Dorn. 377 p. [820]
48. Dorn, Robert D. 1984. Vascular plants of Montana. Cheyenne, WY: Mountain West Publishing. 276 p. [819]
49. Dorn, Robert D. 1988. Vascular plants of Wyoming. Cheyenne, WY: Mountain West Publishing. 340 p. [6129]
50. Duchesne, Luc C.; Hawkes, Brad C. 2000. Fire in northern ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 35-51. [36982]
51. Duncan, Wilbur H.; Duncan, Marion B. 1987. The Smithsonian guide to seaside plants of the Gulf and Atlantic coasts from Louisiana to Massachusetts, exclusive of lower peninsular Florida. Washington, DC: Smithsonian Institution Press. 409 p. [12906]
52. Eggler, Willis A. 1980. Live oak. In: Eyre, F. H., ed. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters: 63-64. [49984]
53. Eriksson, O. 1989. Seedling dynamics and life histories in clonal plants. Oikos. 55: 231-238. [10322]
54. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905]
55. Ferguson, Dennis E.; Byrne, John C.; Coffen, Dale O. 2005. Reforestation trials and secondary succession with three levels of overstory shade in the Grand Fir Mosaic ecosystem. Res. Pap. RMRS-RP-53. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Moutain Research Station. 16 p. [55819]
56. Finney, Mark A.; Martin, Robert E. 1989. Fire history in a Sequoia sempervirens forest at Salt Point State Park, California. Canadian Journal of Forest Research. 19: 1451-1457. [9845]
57. Franklin, Jerry F.; Dyrness, C. T. 1973. Natural vegetation of Oregon and Washington. Gen. Tech. Rep. PNW-8. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 417 p. [961]
58. Frissell, Sidney S., Jr. 1968. A fire chronology for Itasca State Park, Minnesota. Minnesota Forestry Research Notes No. 196. Minneapolis, MN: University of Minnesota. 2 p. [34527]
59. Gardner, Shelley L. 1999. Community classification in the ponderosa pine, mixed conifer, and spruce-fir zones of the east side of the Jemez Mountains, New Mexico. Nacogdoches, TX: Stephen F. Austin State University. 105 p. Thesis. [47521]
60. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; Lewis, Mont E.; Smith, Dixie R. 1977. Vegetation and environmental features of forest and range ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998]
61. Gleason, Henry A.; Cronquist, Arthur. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. 2nd ed. New York: New York Botanical Garden. 910 p. [20329]
62. Goodrich, Sherel; Neese, Elizabeth. 1986. Uinta Basin flora. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region, Ashley National Forest; Vernal, UT: U.S. Department of the Interior, Bureau of Land Management, Vernal District. 320 p. [23307]
63. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603]
64. Green, Pat; Jensen, Mark. 1991. Plant succession within managed grand fir forests of northern Idaho. In: Harvey, Alan E.; Neuenschwander, Leon F., compilers. Proceedings--management and productivity of western-montane forest soils; 1990 April 10-12; Boise, ID. Gen. Tech. Rep. INT-280. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 232-236. [15987]
65. Grigal, D. F.; Ohmann, Lewis F. 1975. Classification, description, and dynamics of upland plant communities within a Minnesota wilderness area. Ecological Monographs. 45(4): 389-407. [61235]
66. Gruell, G. E.; Loope, L. L. 1974. Relationships among aspen, fire, and ungulate browsing in Jackson Hole, Wyoming. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 33 p. In cooperation with: U.S. Department of the Interior, National Park Service, Rocky Mountain Region. [3862]
67. Gullion, Gordon W. 1968. Recommendations for management of ruffed grouse habitat in northern Minnesota. Information Leaflet No. 100. St. Paul, MN: Minnesota Division of Game and Fish.3 p. [15912]
68. Guyette, Richard; McGinnes, E. A., Jr. 1982. Fire history of an Ozark glade in Missouri. Transactions, Missouri Academy of Science. 16: 85-93. [5170]
69. Habeck, James R. 1970. Fire ecology investigations in Glacier National Park: Historical considerations and current observations. Missoula, MT: University of Montana, Department of Botany. 80 p. [6712]
70. Hall, Frederick C. 1973. Plant communities of the Blue Mountains in eastern Oregon and southeastern Washington. R6 Area Guide 3-1. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 82 p. [1059]
71. Halpern, Charles B.; Harmon, Mark E. 1983. Early plant succession on the Muddy River mudflow, Mount St. Helens, Washington. The American Midland Naturalist. 110(1): 97-106. [8870]
72. Halverson, Nancy M., comp. 1986. Major indicator shrubs and herbs on national forests of western Oregon and southwestern Washington. R6-TM-229. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 180 p. [3233]
73. Harrington, H. D. 1964. Manual of the plants of Colorado. 2nd ed. Chicago, IL: The Swallow Press, Inc. 666 p. [6851]
74. Harrison, A. Tyrone. 1980. The Niobrara Valley Preserve: its biogeographic importance and description of its biotic communities. A working report to the Nature Conservancy. 116 p. On file with: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT. [5736]
75. Heinselman, Miron L. 1970. The natural role of fire in northern conifer forests. In: The role of fire in the Intermountain West: Symposium proceedings; 1970 October 27-29; Missoula, MT. Missoula, MT: Intermountain Fire Research Council: 30-41. In cooperation with: University of Montana, School of Forestry. [15735]
76. Hendrickson, William H. 1972. Perspective on fire and ecosystems in the United States. In: Fire in the environment: Symposium proceedings; 1972 May 1-5; Denver, CO. FS-276. [Washington, DC]: U.S. Department of Agriculture, Forest Service: 29-33. In cooperation with: Fire Services of Canada, Mexico, and the United States; Members of the Fire Management Study Group; North American Forestry Commission; FAO. [17276]
77. Hess, Karl; Wasser, Clinton H. 1982. Grassland, shrubland, and forestland habitat types of the White River-Arapaho National Forest. Final Report. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 335 p. [1142]
78. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]
79. Hitchcock, C. Leo; Cronquist, Arthur. 1973. Flora of the Pacific Northwest. Seattle, WA: University of Washington Press. 730 p. [1168]
80. Hitchcock, C. Leo; Cronquist, Arthur; Ownbey, Marion; Thompson, J. W. 1961. Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. Seattle, WA: University of Washington Press. 614 p. [1167]
81. Holmgren, Arthur H.; Reveal, James L. 1966. Checklist of the vascular plants of the Intermountain Region. Res. Pap. INT-32. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 160 p. [1184]
82. Hooker, Larry L.; Tisdale, E. W. 1974. Effects of prescribed burning on a seral brush community in northern Idaho. Station Paper No. 14. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 11 p. [4131]
83. Hungerford, Kenneth E. 1957. Evaluating ruffed grouse foods for habitat improvement. Transactions, 22nd North American Wildlife Conference. [Volume unknown]: 380-395. [15905]
84. Johnson, Charles G., Jr.; Simon, Steven A. 1987. Plant associations of the Wallowa-Snake Province: Wallowa-Whitman National Forest. R6-ECOL-TP-255A-86. Baker, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Wallowa-Whitman National Forest. 399 p. [9600]
85. Johnson, Charles Grier, Jr. 1998. Vegetation response after wildfires in national forests of northeastern Oregon. R6-NR-ECOL-TP-06-98. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 128 p. plus appendices. [30061]
86. Johnston, Marshall C. 1979. The Guadalupe Mountains--a chink in the mosaic of the Chihuahuan Desert? In: Genoways, Hugh H.; Baker, Robert J., eds. Biological investigations in the Guadalupe Mountains National Park: Proceedings of a symposium; 1975 April 4-5; Lubbock, TX. Proceedings and Transactions Series No. 4. Washington, DC: U.S. Department of the Interior, National Park Service: 45-49. [16016]
87. Jones, Stanley D.; Wipff, Joseph K.; Montgomery, Paul M. 1997. Vascular plants of Texas. Austin, TX: University of Texas Press. 404 p. [28762]
88. Jurik, Thomas W. 1985. Differential costs of sexual and vegetative reproduction in wild strawberry populations. Oecologia. 66: 394-403. [3853]
89. Kartesz, John T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. 1st ed. In: Kartesz, John T.; Meacham, Christopher A. Synthesis of the North American flora (Windows Version 1.0), [CD-ROM]. Chapel Hill, NC: North Carolina Botanical Garden (Producer). In cooperation with: The Nature Conservancy; U.S. Department of Agriculture, Natural Resources Conservation Service; U.S. Department of the Interior, Fish and Wildlife Service. [36715]
90. Kearney, Thomas H.; Peebles, Robert H.; Howell, John Thomas; McClintock, Elizabeth. 1960. Arizona flora. 2nd ed. Berkeley, CA: University of California Press. 1085 p. [6563]
91. Kemball, Kevin J.; Wang, G. Geoff; Dang, Qing-Lai. 2005. Response of understory plant community of boreal mixedwood stands to fire, logging, and spruce budworm outbreak. Canadian Journal of Botany. 83(12): 1550-1560. [63193]
92. Kingery, James L.; Mosley, Jeffrey C.; Bordwell, Kirsten C. 1996. Dietary overlap among cattle and cervids in northern Idaho forests. Journal of Range Management. 49(1): 8-15. [26611]
93. Knight, Dennis H.; Anderson, A. Duane; Baxter, George T.; Diem, Kenneth L.; Parker, Michael; Rechard, Paul A.; Singleton, Paul C.; Thilenius, John F.; Ward, A. Lorin; Weeks, Richard W. 1975. The Medicine Bow Ecology Project. Final report: Contract No. 14-06-D-7198. Laramie, WY: The University of Wyoming. 397 p. In cooperation with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station; Wyoming Water Resources Research Institute. [44683]
94. Kramer, Neal B.; Johnson, Frederic D. 1987. Mature forest seed banks of three habitat types in central Idaho. Canadian Journal of Botany. 65: 1961-1966. [3961]
95. Kranz, Jeremiah J.; Linder, Raymond L. 1973. Value of Black Hills forest communities to deer and cattle. Journal of Range Management. 26(4): 263-265. [151]
96. Krefting, Laurits W.; Ahlgren, Clifford E. 1974. Small mammals and vegetation changes after fire in a mixed conifer-hardwood forest. Ecology. 55: 1391-1398. [9874]
97. Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation of the conterminous United States. Special Publication No. 36. New York: American Geographical Society. 77 p. [1384]
98. Lackschewitz, Klaus. 1986. Plants of west-central Montana--identification and ecology: annotated checklist. Gen. Tech. Rep. INT-217. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 128 p. [2955]
99. Lackschewitz, Klaus. 1991. Vascular plants of west-central Montana--identification guidebook. Gen. Tech. Rep. INT-227. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 648 p. [13798]
100. Langenheim, Jean H. 1962. Vegetation and environmental patterns in the Crested Butte area, Gunnison County, Colorado. Ecological Monographs. 32(2): 249-285. [1399]
101. Laven, R. D.; Omi, P. N.; Wyant, J. G.; Pinkerton, A. S. 1980. Interpretation of fire scar data from a ponderosa pine ecosystem in the central Rocky Mountains, Colorado. In: Stokes, Marvin A.; Dieterich, John H., tech. coords. Proceedings of the fire history workshop; 1980 October 20-24; Tucson, AZ. Gen. Tech. Rep. RM-81. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 46-49. [7183]
102. Layser, Earle F. 1980. Flora of Pend Oreille County, Washington. Pullman, WA: Washington State University, Cooperative Extension. 146 p. [1427]
103. Leege, Thomas A., compiler. 1984. Guidelines for evaluating and managing summer elk habitat in northern Idaho. Wildlife Bull. No. 11; Federal Aid Project W-160-R. Boise, ID: Idaho Fish and Game Department. 37 p. [13681]
104. Leege, Thomas A.; Godbolt, Grant. 1985. Herbaceous response following prescribed burning and seeding of elk range in Idaho. Northwest Science. 59(2): 134-143. [1436]
105. Lepofsky, Dana; Turner, Nancy J.; Kuhnlein, Harriet V. 1985. Determining the availability of traditional wild plant foods: an example of Nuxalk foods, Bella Coola, British Columbia. Ecology of Food and Nutrition. 16: 223-241. [7002]
106. Loope, Walter L. 1991. Interrelationships of fire history, land use history, and landscape pattern within Pictured Rocks National Seashore, Michigan. The Canadian Field-Naturalist. 105(1): 18-28. [5950]
107. Maini, Jagmohan Singh. 1960. Invasion of grassland by Populus tremuloides in the northern Great Plains. Saskatoon, SK: University of Saskatchewan. 213 p. Thesis. [50707]
108. Martin, William C.; Hutchins, Charles R. 1981. A flora of New Mexico. Volume 2. Germany: J. Cramer. 2589 p. [37176]
109. McIntire, Patrick W. 1984. Fungus consumption by the Siskiyou chipmunk within a variously treated forest. Ecology. 65(1): 137-146. [8456]
110. Meinecke, E. P. 1929. Quaking aspen: A study in applied forest pathology. Tech. Bull. No. 155. Washington, DC: U.S. Department of Agriculture. 34 p. [26669]
111. Mohlenbrock, Robert H. 1986. [Revised edition]. Guide to the vascular flora of Illinois. Carbondale, IL: Southern Illinois University Press. 507 p. [17383]
112. Morrison, Peter H.; Swanson, Frederick J. 1990. Fire history and pattern in a Cascade Range landscape. Gen. Tech. Rep. PNW-GTR-254. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 77 p. [13074]
113. Neiland, Bonita J. 1958. Forest and adjacent burn in the Tillamook Burn area of northwestern Oregon. Ecology. 39(4): 660-671. [8879]
114. Nelson, Cara R.; Halpern, Charles B. 2005. Edge-related responses of understory plants to aggregated retention harvest in the Pacific Northwest. Ecological Applications. 15(1): 196-209. [61474]
115. Nichols, G. E. 1934. The influence of exposure to winter temperatures upon seed germination in various native American plants. Ecology. 15(4): 364-373. [55167]
116. Odum, Eugene P. 1943. The vegetation of the Edmund Niles Huyck Preserve, New York. American Midland Naturalist. 29(1): 72-88. [62795]
117. Ohmann, Lewis F.; Grigal, David F. 1977. Some individual plant biomass values from northeastern Minnesota. Res. Note NC-227. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. 2 p. [8151]
118. Ossinger, Mary C. 1983. The Pseudotsuga-Tsuga/Rhododendron community in the northeast Olympic Mountains. Bellingham, WA: Western Washington University. 50 p. Thesis. [11435]
119. Ostler, W. Kent; Harper, K. T. 1978. Floral ecology in relation to plant species diversity in the Wasatch Mountains of Utah and Idaho. Ecology. 59(4): 848-861. [62227]
120. Patterson, Patricia A.; Neiman, Kenneth E.; Tonn, Jonalea. 1985. Field guide to forest plants of northern Idaho. Gen. Tech. Rep. INT-180. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 246 p. [1839]
121. Paysen, Timothy E.; Ansley, R. James; Brown, James K.; Gottfried, Gerald J.; Haase, Sally M.; Harrington, Michael G.; Narog, Marcia G.; Sackett, Stephen S.; Wilson, Ruth C. 2000. Fire in western shrubland, woodland, and grassland ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 121-159. [36978]
122. Pojar, Jim; MacKinnon, Andy, eds. 1994. Plants of the Pacific Northwest coast: Washington, Oregon, British Columbia and Alaska. Redmond, WA: Lone Pine Publishing. 526 p. [25159]
123. Popovich, Steve J.; Shepperd, Wayne D.; Reichert, Donald W.; Cone, Michael A. 1993. Flora of the Fraser Experimental Forest, Colorado. Gen. Tech. Rep. RM-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 62 p. [26836]
124. Powell, David C. 1994. Effects of the 1980's western spruce budworm outbreak on the Malheur National Forest in northeastern Oregon. Tech. Pub. R6-FI&D-TP-12-94. Portland, OR: U.S. Department of Agriculture, Forest Service, Natural Resources Staff, Forest Insects and Diseases Group. 176 p. [29717]
125. Qi, Meiqin; Scarratt, John B. 1998. Effect of harvesting method on seed bank dynamics in a boreal mixedwood forest in northwestern Ontario. Canadian Journal of Botany. 76: 872-883. [29373]
126. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]
127. Rambo, Jennie L.; Faeth, Stanley H. 1999. Effect of vertebrate grazing on plant and insect community structure. Conservation Biology. 13(5): 1047-1054. [51843]
128. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843]
129. Reed, John F. 1952. The vegetation of the Jackson Hole Wildlife Park, Wyoming. The American Midland Naturalist. 48(3): 700-729. [1949]
130. Rice, P. M.; Toney, J. C. 1996. Plant population responses to broadcast herbicide applications for spotted knapweed control. Down to Earth. 51(2): 14-19. [27754]
131. Ripple, William J. 1994. Historic spatial patterns of old forests in western Oregon. Journal of Forestry. 92(11): 45-49. [33881]
132. Rivest, Pierre; Bergeron, Jean-Marie. 1981. Density, food habits, and economic importance of raccoons (Procyon lotor) in Quebec agrosystems. Canadian Journal of Zoology. 59: 1755-1762. [25341]
133. Roberts, Mark R.; Zhu, Lixiang. 2002. Early response of the herbaecous layer to harvesting in a mixed coniferous-deciduous forest in New Brunswick, Canada. Forest Ecology and Management. 155: 17-31. [40747]
134. Roland, A. E.; Smith, E. C. 1969. The flora of Nova Scotia. Halifax, NS: Nova Scotia Museum. 746 p. [13158]
135. Ross, Robert L.; Hunter, Harold E. 1976. Climax vegetation of Montana: Based on soils and climate. Bozeman, MT: U.S. Department of Agriculture, Soil Conservation Service. 64 p. [2028]
136. Rowe, J. S. 1983. Concepts of fire effects on plant individuals and species. In: Wein, Ross W.; MacLean, David A., eds. The role of fire in northern circumpolar ecosystems. SCOPE 18. New York: John Wiley & Sons: 135-154. [2038]
137. Rundel, Philip W.; Parsons, David J.; Gordon, Donald T. 1977. Montane and subalpine vegetation of the Sierra Nevada and Cascade Ranges. In: Barbour, Michael G.; Major, Jack, eds. Terrestrial vegetation of California. New York: John Wiley & Sons: 559-599. [4235]
138. Saenz, Loretta. 1983. Quercus garryana woodland/grassland mosaic dynamics in northern California. Arcata, CA: Humboldt State University. 71 p. Thesis. [52769]
139. Schmidt, Wyman C.; Lotan, James E. 1980. Phenology of common forest flora of the northern Rockies--1928 to 1937. Res. Pap. INT-259. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20 p. [2082]
140. Seklecki, Mariette T.; Grissino-Mayer, Henri D.; Swetnam, Thomas W. 1996. Fire history and the possible role of Apache-set fires in the Chiricahua Mountains of southeastern Arizona. In: Ffolliott, Peter F.; DeBano, Leonard F.; Baker, Malchus B., Jr.; Gottfried, Gerald J.; Solis-Garza, Gilberto; Edminster, Carleton B.; Neary, Daniel G.; Allen, Larry S.; Hamre, R. H., tech. coords. Effects of fire on Madrean Province ecosystems: a symposium proceedings; 1996 March 11-15; Tucson, AZ. Gen. Tech. Rep. RM-GTR-289. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 238-246. [28082]
141. Seymour, Frank Conkling. 1982. The flora of New England. 2nd ed. Phytologia Memoirs 5. Plainfield, NJ: Harold N. Moldenke and Alma L. Moldenke. 611 p. [7604]
142. Shiflet, Thomas N., ed. 1994. Rangeland cover types of the United States. Denver, CO: Society for Range Management. 152 p. [23362]
143. Simmerman, Dennis G.; Arno, Stephen F.; Harrington, Michael G.; Graham, Russell T. 1991. A comparison of dry and moist fuel underburns in ponderosa pine shelterwood units in Idaho. In: Andrews, Patricia L.; Potts, Donald F., eds. Proceedings, 11th annual conference on fire and forest meteorology; 1991 April 16-19; Missoula, MT. SAF Publication 91-04. Bethesda, MD: Society of American Foresters: 387-397. [16186]
144. Spies, Thomas A. 1991. Plant species diversity and occurrence in young, mature, and old-growth Douglas-fir stands in western Oregon and Washington. In: Ruggiero, Leonard F.; Aubry, Keith B.; Carey, Andrew B.; Huff, Mark H., technical coordinators. Wildlife and vegetation of unmanaged Douglas-fir forests. Gen. Tech. Rep. PNW-GTR-285. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 111-121. [17309]
145. Standley, Paul C. 1921. Flora of Glacier National Park, Montana. Contributions from the United States National Herbarium. Vol. 22, Part 5. Washington, DC: United States National Museum, Smithsonian Institution: 235-438. [12318]
146. Staudt, G. 1989. The species of Fragaria, their taxonomy and geographical distribution. Acta Horticulturae. 265: 23-33. [65232]
147. Steele, Robert; Geier-Hayes, Kathleen. 1987. The grand fir/blue huckleberry habitat type in central Idaho: succession and management. Gen. Tech. Rep. INT-228. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 66 p. [8133]
148. Steele, Robert; Geier-Hayes, Kathleen. 1989. The Douglas-fir/mountain maple habitat type in central Idaho: succession and management. Preliminary draft. On file at: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 77 p. [8434]
149. Steele, Robert; Geier-Hayes, Kathleen. 1989. The Douglas-fir/ninebark habitat type in central Idaho: succession and management. Gen. Tech. Rep. INT-252. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 65 p. [8136]
150. Steele, Robert; Geier-Hayes, Kathleen. 1989. The grand fir/mountain maple habitat type in central Idaho: succession and management. Review draft. On file at: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 148 p. [8435]
151. Steele, Robert; Geier-Hayes, Kathleen. 1994. The Douglas-fir/white spirea habitat type in central Idaho: succession and management. Gen. Tech. Rep. INT-305. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 81 p. [23481]
152. Steele, Robert; Geier-Hayes, Kathleen. 1995. Major Douglas-fir habitat types of central Idaho: a summary of succession and management. Gen. Tech. Rep. INT-GTR-331. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 23 p. [26587]
153. Stickney, Peter F. 1989. Seral origin of species comprising secondary plant succession in Northern Rocky Mountain forests. FEIS workshop: Postfire regeneration. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT. 10 p. [20090]
154. Stickney, Peter F.; Campbell, Robert B., Jr. 2000. Data base for early postfire succession in Northern Rocky Mountain forests. Gen. Tech. Rep. RMRS-GTR-61-CD, [CD-ROM]. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. On file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. [43743]
155. Strausbaugh, P. D.; Core, Earl L. 1977. Flora of West Virginia. 2nd ed. Morgantown, WV: Seneca Books, Inc. 1079 p. [23213]
156. Strickler, Gerald S.; Edgerton, Paul J. 1976. Emergent seedlings from coniferous litter and soil in eastern Oregon. Ecology. 57: 801-807. [2039]
157. Stromberg, Julie C.; Patten, Duncan T. 1991. Dynamics of the spruce-fir forests on the Pinaleno Mountains, Graham Co., Arizona. The Southwestern Naturalist. 36(1): 37-48. [14878]
158. Stuart, John D. 1987. Fire history of an old-growth forest of Sequoia sempervirens (Taxodiaceae) forest in Humboldt Redwoods State Park, California. Madrono. 34(2): 128-141. [7277]
159. Stucker, Donald E.; Peek, James M. 1984. Response of bighorn sheep to the Ship Island Burn. Report submitted to the Northern Forest Fire Laboratory: Supplement No. INT-80-108CA. 33 p. On file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT. [17070]
160. Swain, Albert M. 1978. Environmental changes during the past 2000 years in north-central Wisconsin: analysis of pollen, charcoal, and seeds from varved lake sediments. Quaternary Research. 10: 55-68. [6968]
161. Tande, Gerald F. 1979. Fire history and vegetation pattern of coniferous forests in Jasper National Park, Alberta. Canadian Journal of Botany. 57: 1912-1931. [18676]
162. Thilenius, John F. 1971. Vascular plants of the Black Hills of South Dakota and Wyoming. Res. Pap. RM-71. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 43 p. [2319]
163. Thilenius, John F. 1972. Classification of deer habitat in the ponderosa pine forest of the Black Hills, South Dakota. Res. Pap. RM-91. Fort Collins, CO: U.S. Department of Agriculture, Forest Service. 28 p. [2317]
164. Thompson, Ken; Bakker, Jan P.; Bekker, Renee M. 1997. The soil seed banks of north west Europe: methodology, density and longevity. Cambridge, UK: Cambridge University Press. 276 p. [65467]
165. U.S. Department of Agriculture, Natural Resources Conservation Service. 2008. PLANTS Database, [Online]. Available: /. [34262]
166. Volland, Leonard A.; Dell, John D. 1981. Fire effects on Pacific Northwest forest and range vegetation. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Range Management and Aviation and Fire Management. 23 p. [2434]
167. Voss, Edward G. 1985. Michigan flora. Part II. Dicots (Saururaceae--Cornaceae). Bull. 59. Bloomfield Hills, MI: Cranbrook Institute of Science; Ann Arbor, MI: University of Michigan Herbarium. 724 p. [11472]
168. Wade, Dale D.; Brock, Brent L.; Brose, Patrick H.; Grace, James B.; Hoch, Greg A.; Patterson, William A., III. 2000. Fire in eastern ecosystems. In: Brown, James K.; Smith, Jane Kapler, eds. Wildland fire in ecosystems: Effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 53-96. [36983]
169. Wallmo, Olof C.; Regelin, Wayne L.; Reichert, Donald W. 1972. Forage use by mule deer relative to logging in Colorado. Journal of Wildlife Management. 36: 1025-1033. [4486]
170. Wang, G. Geoff; Kemball, Kevin J. 2005. Effects of fire severity on early development of understory vegetation. Canadian Journal of Forest Research. 35: 254-262. [60329]
171. Weber, William A. 1987. Colorado flora: western slope. Boulder, CO: Colorado Associated University Press. 530 p. [7706]
172. Weber, William A.; Wittmann, Ronald C. 1996. Colorado flora: eastern slope. 2nd ed. Niwot, CO: University Press of Colorado. 524 p. [27572]
173. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]
174. Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs. 30(3): 279-338. [6836]
175. Wiggins, Ira L. 1980. Flora of Baja California. Stanford, CA: Stanford University Press. 1025 p. [21993]
176. Wofford, B. Eugene. 1989. Guide to the vascular plants of the Blue Ridge. Athens, GA: The University of Georgia Press. 384 p. [12908]
177. Youngblood, Andrew; Metlen, Kerry L.; Coe, Kent. 2006. Changes in stand structure and composition after restoration treatments in low elevation dry forests of northeastern Oregon. Forest Ecology and Management. 234(1-3): 143-163. [64992]

FEIS Home Page