Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    The energy used for regulating building temperatures accounts for 14% of the primary energy consumed in the U.S. One-quarter of this energy is leaked through ineffcient glass windows in cold weather. The development of transparent composites could potentially provide affordable window materials with enhanced energy efficiency. Transparent wood as a promising material has presented desirable performances in thermal and light management. In this work, the performance of transparent wood is optimized toward an energy efficient window material that possesses the following attributes: 1) high optical transmittance (≈91%), comparable to that of glass; 2) high clarity with low haze (≈15%); 3) high toughness (3.03 MJ m-3) that is 3 orders of magnitude higher than standard glass (0.003 MJ m-3); 4) low thermal conductivity (0.19 W m-1 K-1) that is more than 5 times lower than that of glass. Additionally, the transparent wood is a sustainable material, with low carbon emissions and scaling capabilities due to its compatibility with industry-adopted rotary cutting methods. The scalable, high clarity, transparent wood demonstrated in current work can potentially be employed as energy effcient and sustainable windows for signifcant environmental and economic benefts.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Mi, Ruiyu; Li, Tian; Dalgo, Daniel; Chen, Chaoji; Kuang, Yudi; He, Shuaiming; Zhao, Xinpeng; Xie, Weiqi; Gan, Wentao; Zhu, Junyong; Srebric, Jelena; Yang, Ronggui; Hu, Liangbing. 2020. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials. 30(1): 1907511. https://doi.org/10.1002/adfm.201907511.

    Cited

    Google Scholar

    Keywords

    Building materials, wood nanocomposites, thermal insulation, clear, cellulose nanomaterials

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/59575