Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

USDA Logo U.S. Department of Agriculture

Publication Details

Title:
Multi-scale analyses of wildland fire combustion processes: Large-scale field experiments – SODAR 3-dimensional wind
Author(s):
Charney, Joseph J.; Heilman, Warren E.; Bian, Xindi; Seitz, Joseph; Clark, Kenneth L.; Gallagher, Michael R.; Hom, John L.; Zhong, Shiyuan; Cole, Jason A.; Patterson, Matthew M.; Skowronski, Nicholas S.
Publication Year:
2023
How to Cite:
These data were collected using funding from the U.S. Government and can be used without additional permissions or fees. If you use these data in a publication, presentation, or other research product please use the citation below when citing the data product:
Charney, Joseph J.; Heilman, Warren E.; Bian, Xindi; Seitz, Joseph; Clark, Kenneth L.; Gallagher, Michael R.; Hom, John L.; Zhong, Shiyuan; Cole, Jason A.; Patterson, Matthew M.; Skowronski, Nicholas S. 2023. Multi-scale analyses of wildland fire combustion processes: Large-scale field experiments – SODAR 3-dimensional wind. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2022-0094
Abstract:
The United States Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) funded project: Multi-scale Analyses of Wildland Fire Combustion Processes in Open-canopied Forests using Coupled and Iteratively Informed Laboratory-, Field-, and Model-based Approaches (RC-2641) conducted a large-scale (management-scale) field experiment during an operational prescribed burn to quantify how atmospheric dynamics across a wide range of spatial and temporal scales affect fire propagation, energy exchange, and fuel consumption. This experiment also provided an opportunity to fully examine how combustion related processes transfer across scales of particles and simple fuel beds in the laboratory, wind tunnel, small-scale, and operational prescribed burns as instrumentation used in small-scale field experiments was embedded in this experiment. In addition, the large-scale experiment also provides data necessary for simulation and model testing of coupled atmosphere-fire behavior prediction systems (e.g., WRF-SFire, WFDS, QUIC-Fire, FIRETEC) and coupled atmosphere-canopy-smoke dispersion prediction systems (e.g., ARPS-Canopy/FLEXPART). The large-scale field experiment includes data from a heavily instrumented ~12.1 hectare (ha) management-scale fire conducted at the Silas Little Experimental Forest in the Pinelands National Reserve (PNR) on March 13, 2019.

This data publication contains ambient (i.e., non-fire-induced) wind speed and direction data collected from a Doppler Sonic Detection and Ranging (SODAR) wind profiler (Remtech PA0, The Villages, FL, USA). The SODAR was set up near the control tower and within 100 meters (m) of the northern edge of the burn unit to measure lower atmospheric boundary-layer wind speeds and directions (0 to approximately 400 m above ground level [AGL]) at 20 m height increments every ten minutes for the duration of the fire experiment.

Keywords:
fire behavior; fire spread; combustion; computational fluid dynamics; drag forces; fuel structure; heat fluxes; momentum fluxes; prescribed burn; prescribed fire; temperature; 3-dimentional turbulence; wind speed; wind direction; Doppler sonic detection and ranging; SODAR; biota; climatologyMeteorologyAtmosphere; environment; Fire suppression, pre-suppression; Prescribed fire; Smoke; Wildland/urban interface; Silas Little Experimental Forest; New Jersey; Burlington County; Pinelands National Reserve; PNR; Pine Barrens; NJPB; Pine Lands
Related publications:
  • Gallagher, Michael R.; Skowronski, Nicholas S.; Hadden, Rory M.; Mueller, Eric V.; Clark, Kenneth L.; Campbell-Lochrie, Zakary J.; Walker-Ravena, Carlos; Kremens, Robert L.; Everland, Alexis I.; Patterson, Matthew M.; Cole, Jason A.; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi; Mell, William E.; Hom, John L.; Im, Seong-kyun; Kiefer, Michael T.; Zhong, Shiyuan; Simeoni, Albert J.; Rangwala, Ali; Di Cristina, Giovanni; Sietz, Joseph. 2023. Multi-scale analyses of wildland fire combustion processes: Large-scale field experiments – burn layout and documentation. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2022-0089
  • Gallagher, Michael R.; Skowronski, Nicholas S.; Hadden, Rory M.; Mueller, Eric V.; Clark, Kenneth L.; Campbell-Lochrie, Zakary J.; Walker-Ravena, Carlos; Kremens, Robert L.; Everland, Alexis I.; Patterson, Matthew M.; Cole, Jason A.; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi; Mell, William E.; Hom, John L.; Im, Seong-kyun; Kiefer, Michael T.; Zhong, Shiyuan; Simeoni, Albert J.; Rangwala, Ali; Di Cristina, Giovanni. 2022. Multi-scale analyses of wildland fire combustion processes: Small-scale field experiments - plot layout and documentation. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2022-0079
Metrics:
Visit count : 97
Download count: 6
More details
Data Access:
  • View metadata (HTML)
  • View file index (HTML), which lists all files in this data publication and short description of their contents
  • Download all files below for the complete publication:

Need information about Using our Formats?