Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

USDA Logo U.S. Department of Agriculture

Publication Details

Title:
Mass, temperature, and relative humidity stability of automated sorption balances: results of an interlaboratory study
Author(s):
Zelinka, Samuel L.; Glass, Samuel V.; Lazarcik, Eleanor Q.D.; Thybring, Emil E.; Altgen, Michael; Rautkari, Lauri; Curling, Simon; Cao, Jinzhen; Wang, Yujiao; Künniger, Tina; Nyström, Gustav; Dreimol, Christopher Hubert; Burgert, Ingo; Uyup, Mohd Khairun Anwar; Khadiran, Tumirah; Roper, Mark G.; Broom, Darren P.; Schwarzkopf, Matthew; Yudhanto, Arief; Subah, Mohammad; Lubineau, Gilles; Fredriksson, Maria; Strojecki, Marcin; Olek, Wiesław; Majka, Jerzy; Pedersen, Nanna Bjerregaard; Burnett, Daniel J.; Garcia, Armando R.; Verdonck, Els; Dreisbach, Frieder; Waguespack, Louis; Schott, Jennifer; Esteban, Luis G.; Garcia-Iruela, Alberto; Colinart, Thibaut; Rémond, Romain; Mazian, Brahim; Perre, Patrick; Emmerich, Lukas; Li, Ling
Publication Year:
2024
How to Cite:
These data were collected using funding from the U.S. Government and can be used without additional permissions or fees. If you use these data in a publication, presentation, or other research product please use the following citation:
Zelinka, Samuel L.; Glass, Samuel V.; Lazarcik, Eleanor Q.D.; Thybring, Emil E.; Altgen, Michael; Rautkari, Lauri; Curling, Simon; Cao, Jinzhen; Wang, Yujiao; Künniger, Tina; Nyström, Gustav; Dreimol, Christopher Hubert; Burgert, Ingo; Uyup, Mohd Khairun Anwar; Khadiran, Tumirah; Roper, Mark G.; Broom, Darren P.; Schwarzkopf, Matthew; Yudhanto, Arief; Subah, Mohammad; Lubineau, Gilles; Fredriksson, Maria; Strojecki, Marcin; Olek, Wiesław; Majka, Jerzy; Pedersen, Nanna Bjerregaard; Burnett, Daniel J.; Garcia, Armando R.; Verdonck, Els; Dreisbach, Frieder; Waguespack, Louis; Schott, Jennifer; Esteban, Luis G.; Garcia-Iruela, Alberto; Colinart, Thibaut; Rémond, Romain; Mazian, Brahim; Perre, Patrick; Emmerich, Lukas; Li, Ling. 2024. Mass, temperature, and relative humidity stability of automated sorption balances: results of an interlaboratory study. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2024-0025
Abstract:
Automated sorption balances are widely used for characterizing the interaction of water vapor with hygroscopic materials. These instruments provide an efficient way to collect sorption isotherm data and kinetic data. A typical method for defining equilibrium after a step change in relative humidity (RH) is using a particular threshold value for the rate of change in mass with time. Recent studies indicate that commonly used threshold values yield substantial errors and that further measurements are needed at extended hold times as a basis to assess the accuracy of abbreviated equilibration criteria. However, the mass measurement accuracy at extended times depends on the operational stability of the instrument. Published data on the stability of automated sorption balances are rare. As a result, an interlaboratory study was undertaken to investigate equilibration criteria for automated sorption balances both by characterizing instrument operational stability and by measuring water vapor sorption in hygroscopic material specimens at extended times. This data publication contains mass, temperature, and RH stability records collected between March 2022 and October 2023 from 25 laboratories throughout the world.

Keywords:
economy; Forest Products; Forest products engineering; Wood properties; forest products laboratory; interlaboratory investigation; water vapor sorption; automated sorption balances; measurement uncertainty; instrument stability; hygoscopic materials; United States; Europe; Asia; Middle East
Related publications:
  • Zelinka, Samuel L.; Glass, Samuel V.; Lazarcik, Eleanor Q.D.; Thybring, Emil E.; Altgen, Michael; Rautkari, Lauri; Curling, Simon; Cao, Jinzhen; Wang, Yujiao; Künniger, Tina; Nyström, Gustav; Dreimol, Christopher Hubert; Burgert, Ingo; Uyup, Mohd Khairun Anwar; Khadiran, Tumirah; Roper, Mark G.; Broom, Darren P.; Schwarzkopf, Matthew; Yudhanto, Arief; Subah, Mohammad; Lubineau, Gilles; Fredriksson, Maria; Strojecki, Marcin; Olek, Wiesław; Majka, Jerzy; Pedersen, Nanna Bjerregaard; Burnett, Daniel J.; Garcia, Armando R.; Verdonck, Els; Dreisbach, Frieder; Waguespack, Louis; Schott, Jennifer; Esteban, Luis G.; Garcia-Iruela, Alberto; Colinart, Thibaut; Rémond, Romain; Mazian, Brahim; Perre, Patrick; Emmerich, Lukas; Li, Ling. 2024. Interlaboratory study of the operational stability of automated sorption balances. Adsorption. https://doi.org/10.1007/s10450-024-00472-9
Metrics:
Visit count : 147
Download count: 9
More details
Data Access:

Need information about Using our Formats?