USDA, RMRS, AWAE logo USDA RMRS AWAE RMRS
  • ABOUT W&W
    • About Us
    • Scientist Profiles
  • RESEARCH
    • Aquatic Ecology
    • Atmospheric Sciences
    • Biogeochemistry
    • Climate Change
    • Engineering
    • Fire & Fuels
    • Fisheries
    • Geomorphology
    • Hydrology
    • Invasive Species
    • Plant Physiology
    • Sediment & Erosion
    • Spatial Analysis
    • Watershed Processes
  • PROJECTS, TOOLS, & DATA
    • Click for Complete List of W&W Projects, Tools, & Data
    • The Aquatic eDNAtlas Project
      • eDNAtlas Sample Results
      • Supporting Science
      • FAQ & Field Protocol
      • eDNA Sampling Grid
      • Project Background
      • Contacts
    • Bull Trout eDNA Project
      • eDNA Sampling & Supporting Science
      • Participating in the Bull Trout eDNA Survey
      • Bull Trout eDNA Sample Sites
      • The Status of the Bull Trout Survey
      • Partners
    • Cold-Water Climate Shield
      • Presentations & Publications
      • Digital Maps & ArcGIS Shapefiles
      • Data Sources & Documentation
      • Trout Distribution Monitoring
      • Related Links
        • NorWeST: Regional Database & Modeled Stream Temperature
        • SSN & STARS
        • Stream Temperature Monitoring & Modeling
        • U.S. Stream Flow Metric Dataset
    • Fire & Aquatic Ecosystems
      • Management Questions
      • Publications
        • Manuscripts & Reports
        • Fire & Aquatic Bibliography
        • Science Briefings
          • Adaptation for Wildland Aquatic Resources
          • Climate Change & Wildfires
          • Wildfire Impacts on Stream Sedimentation
      • Workshops
        • 2009
          • Agenda
          • Topics & Contacts
        • 2002
          • Author Profiles
          • Special Issue in Forest Ecology and Management
          • Downloadable Papers
      • Links
      • Photo Gallery
    • Geomorphic Road Analysis & Inventory Package (GRAIP)
      • Introduction
      • Case Studies
        • Legacy Roads
        • Watershed Studies
      • Publications
        • Manuals
        • Selected Articles
        • Science Briefings
        • Posters
      • Downloads & Software
        • Database Update (2013)
        • Data Dictionary 5.0
        • Terrain Analysis (TauDEM)
      • Supporting Information
        • Calculating Base Rate
        • List of Equipment
      • Photo Galleries
        • GRAIP
        • Legacy Roads
        • Other Roads
      • Links & Models
        • FishXing
        • WEPP
        • SEDMODL2
        • STREAM TEAM
        • Water-Road Interaction Technology Series
      • Training Opportunities
      • Jobs & Summer Employment
      • Frequently Asked Questions
      • Contacts
    • Integrating Forests, Fish & Fire (IF3)
      • Model Documentation
      • Images
      • Case Studies
      • Contacts
      • Contributors
        • Boise Aquatic Science Lab
        • Aldo Leopold Wilderness Research Institute
        • Pacific Northwest Research Station
        • Joint Fire Science Program
    • NorWeST: Regional Database & Modeled Stream Temperature
      • Project Boundary
      • Processing Status
      • Data Downloads
        • Stream Temperature Database
        • Modeled Stream Temperatures
      • Interactive Map
      • Publications
        • Supporting Research
        • Science Briefings
        • Posters & Presentations
        • Blogs & Newsletters
      • Supporting Information
        • Reconditioned NHD Plus
        • Regional Climate Downscaling
        • Climate-Aquatics Blog
        • 2011 Climate-Aquatics Decision Support Workshop
      • Related Links
        • SSN & STARS
        • Stream Temperature Monitoring & Modeling
        • U.S. Stream Flow Metric Dataset
      • Contacts & Contributors
    • Sediment Transport
      • Idaho & Nevada
        • Publications
        • FAQ & Contact Us
      • Colorado & Wyoming
        • Publications
        • FAQ & Contact Us
    • Spatial Statistical Modeling of Streams (SSN & STARS)
      • Frequently Asked Questions
      • Software & Data
      • GIS Layers
      • Publications & Presentations
      • Latest Releases
      • Authors & Contacts
      • Other Software
      • News
    • Stream Temperature Monitoring & Modeling
      • Protocols and Resources
      • Interactive Maps
      • Modeling
        • Air Temperature Model
        • Multiple Regression Model
        • Spatial Statistical Model
        • SSN & STARS
        • NorWeST
      • Resources
        • Climate Change Resource Center
        • Climate-Aquatics Blog
        • Climate-Aquatics Workshop
        • Temperature Data Macro
      • Publications
        • Publications & Presentations
        • Science Briefings
    • Understanding the diversity of Cottus in western North America
      • Current Contributions
      • Collection Particulars
      • Species of Interest
      • Phylogeny and Maps
      • Publications and Posters
      • Briefing Papers
      • Contact
    • Valley Bottom Confinement
      • Download VCA Script & Toolbox
      • Publications
    • Water Erosion Prediction Project (WEPP)
      • Forest Management
        • Disturbed WEPP
        • Disturbed WEPP Batch
        • ERMiT
        • ERMiT Batch
        • WEPP FuME
        • Tahoe Basin Sediment Model
      • Road Erosion
        • WEPP: Road
        • WEPP: Road Batch
      • Fire Effects
        • Disturbed WEPP
        • Disturbed WEPP Batch
        • ERMiT
        • ERMiT Batch
        • WEPP FuME
      • WEPP Climate Parameter Files
        • Rock:Clime
      • Peak Flow Calculator
      • Additional WEPP Resources
    • U.S. Stream Flow Metric Dataset
      • Dataset Downloads
      • Publications
        • Macroscale Hydrologic Modeling
        • Comparison of VIC/MC1 Models to Observed Gage Data
        • Science Briefing
      • Contacts
        • Charlie Luce
        • Seth Wenger
      • Links
        • NHD Plus
        • University of Washington Climate Impacts Group
        • Trout Unlimited Science Page
        • Climate-Aquatics Blog
      • Related Websites
        • SSN & STARS
        • Reconditioned NHD Plus
        • NorWeST Stream Temperature
        • Stream Temperature Modeling & Monitoring
  • PUBLICATIONS
    • Search Publications (TreeSearch)
    • Recent W&W Publications
    • All Available W&W Publications
    • Publications by Project or Research Subject
      • Biogeochemistry
      • Environmental DNA
      • Climate Change
      • Engineering
      • Fire & Aquatic Ecosystems
      • Geomorphic Road Analysis & Inventory Package (GRAIP)
      • Glacier Lakes Ecosystem Experiments Site (GLEES)
      • Invasive Aquatic Species
      • NorWeST Stream Temperature Regional Database & Model
      • River Bathymetry Toolkit (RBT)
      • Sediment Transport
        • Idaho/Nevada
        • Colorado/Wyoming
      • Spatial Statistical Modeling of Stream Networks (SSN & STARS)
      • Stream Temperature Modeling & Monitoring
      • Threats Assessment for Western Riparian Ecosystems
    • Science Briefings
      • Search by Title
      • Search by Researcher
      • Search by Subject
    • General Technical Reports
      • Search by Title
      • Search by Researcher
      • Search by Subject
  • CONTACT US
    • Locations
      • Albuquerque Forestry Sciences Lab
      • Boise Aquatic Sciences Lab
      • Flagstaff Forestry Sciences Lab
      • Fort Collins Biogeochemistry Lab
      • Fort Collins Forestry Sciences Lab
      • Missoula Fire Sciences Lab
      • Moscow Forestry Sciences Lab
    • Employee Profiles
    • Jobs & Employment
    • Website Feedback
    search only W&W
Home Flagstaff Lab Managing Arid and Semi-Arid Watersheds Central Arizona Highlands Chaparral Shrublands Climate
 

Chaparral Shrublands: Climate

The Central Arizona Highlands, similar to other areas in the state, are characterized by a cyclic climatic regime. Winters in the chaparral type are cool and wet through March, followed by warm, dry weather for 3 or 4 months until summer rains start in July. Dry weather usually returns by October and persists until winter rains begins in November or December.

Precipitation

Annual—The climate is semi-arid with average annual precipitation of about 26 inches (30-yr average); 63 % occurs from October through May, and37 % from June through September (Davis 1993). About a third of the winter precipitation falls as snow. The 2 driest months are May and June, which are followed by the summer monsoonal months of July through September, when thunderstorms develop as moist air from the south moves into the area. Summer storms are often intense, but produce less streamflow than the larger, less intense winter storms of December through April, which yield about 90 % of the annual streamflow (nearly 50 % occurs during February and March). Flow is intermittent under natural conditions.

Mean annual precipitation ranges from 16 inches at the lower limits of the chaparral (3,000 ft) to over 25 inches on the wetter sites (6,000 ft) (Fig. 5). The proximity of mountains and other physiographic factors that control flow and cooling of air combine with elevation to produce the local climate. Some snow falls each year, but normally snow is not an important factor in the hydrology of the chaparral type (Hibbert et al 1974). Annual potential evapotranspiration rates can approach 35 inches (Hibbert 1979).

Although mean annual precipitation is commonly used to describe the moisture regime of an area, the mean indicates nothing about the frequency and seasonal distribution of rain, and little about the magnitude of dry and wet years, critical factors in the survival and maintenance of plant cover. Available data suggest that the driest years receive about one-half the mean precipitation while the wettest years get about double the mean (Hibbert et al 1974). Thus, as little as 8 inches of rain may fall in dry years while in very wet years the wetter sites might received as much as 50 inches.

Winter—About 55 % of the annual precipitation falls as rain or snow between November and April. Winter moisture usually comes from the Pacific as frontal-type storms which become heavier as the moist air is forced over the central highlands (Hibbert et al 1974). These storms can produce several inches of water in 24 hours, but their intensity is relatively low.

Summer— Summer moisture from the Gulf of Mexico in the form of local convective storms accounts for about 35 % of the annual rainfall during July, August, and September. These storm are often intense, dropping as much as 3 inches of water in an hour. The remaining 10 % of the annual precipitation comes in May, June, and October. The water year used in the chaparral type is calculated from the first of July to coincide with the end of a 2- to 3-month dry period when the moisture regime varies the least from year to year.

Variability—Winter precipitation is more variable than summer precipitation in both amount and time of occurrence from year-to-year. However, yearly variations in precipitation generally decrease with increases in elevations. Spring drought is often more detrimental to most plants and animals in the region than the fall drought, due to the higher temperatures and wind conditions during the beginning of the growing season.

 

Chaparral Shrublands: General Information | Climate| Data Collected | Animal Species | Plant Species | Geology | Management Implications | Plant- Water relations | Soils | Streamflow | Treatment and Results

Find W&W and follow us on your favorite social media site:

facebook
twitter
youtube
email


  |  RMRS Home  |   AWAE Home  |   Disclaimers  |   Freedom of Information Act (FOIA)  |   Privacy Notice  |   Quality of Information  |   Print This Page  |