USDA, RMRS, AWAE logo USDA RMRS AWAE RMRS
  • ABOUT W&W
    • About Us
    • Scientist Profiles
  • RESEARCH
    • Aquatic Ecology
    • Atmospheric Sciences
    • Biogeochemistry
    • Climate Change
    • Engineering
    • Fire & Fuels
    • Fisheries
    • Geomorphology
    • Hydrology
    • Invasive Species
    • Plant Physiology
    • Sediment & Erosion
    • Spatial Analysis
    • Watershed Processes
  • PROJECTS, TOOLS, & DATA
    • Click for Complete List of W&W Projects, Tools, & Data
    • The Aquatic eDNAtlas Project
      • eDNAtlas Sample Results
      • Supporting Science
      • FAQ & Field Protocol
      • eDNA Sampling Grid
      • Project Background
      • Contacts
    • Bull Trout eDNA Project
      • eDNA Sampling & Supporting Science
      • Participating in the Bull Trout eDNA Survey
      • Bull Trout eDNA Sample Sites
      • The Status of the Bull Trout Survey
      • Partners
    • Cold-Water Climate Shield
      • Presentations & Publications
      • Digital Maps & ArcGIS Shapefiles
      • Data Sources & Documentation
      • Trout Distribution Monitoring
      • Related Links
        • NorWeST: Regional Database & Modeled Stream Temperature
        • SSN & STARS
        • Stream Temperature Monitoring & Modeling
        • U.S. Stream Flow Metric Dataset
    • Cutthroat trout-rainbow trout hybridization
    • Fire & Aquatic Ecosystems
      • Management Questions
      • Publications
        • Manuscripts & Reports
        • Fire & Aquatic Bibliography
        • Science Briefings
          • Adaptation for Wildland Aquatic Resources
          • Climate Change & Wildfires
          • Wildfire Impacts on Stream Sedimentation
      • Workshops
        • 2009
          • Agenda
          • Topics & Contacts
        • 2002
          • Author Profiles
          • Special Issue in Forest Ecology and Management
          • Downloadable Papers
      • Links
      • Photo Gallery
    • Geomorphic Road Analysis & Inventory Package (GRAIP)
      • Introduction
      • Case Studies
        • Legacy Roads
        • Watershed Studies
      • Publications
        • Manuals
        • Selected Articles
        • Science Briefings
        • Posters
      • Downloads & Software
        • Database Update (2013)
        • Data Dictionary 5.0
        • Terrain Analysis (TauDEM)
      • Supporting Information
        • Calculating Base Rate
        • List of Equipment
      • Photo Galleries
        • GRAIP
        • Legacy Roads
        • Other Roads
      • Links & Models
        • FishXing
        • WEPP
        • SEDMODL2
        • STREAM TEAM
        • Water-Road Interaction Technology Series
      • Training Opportunities
      • Jobs & Summer Employment
      • Frequently Asked Questions
      • Contacts
    • GRAIP_Lite
      • Manuals & Publications
      • GRAIP_Lite FAQs
      • Training Opportunities
      • Contacts
      • GRAIP_Lite Download
      • Case Studies
      • Managing Arid and Semi-Arid Watersheds
        • about
        • basics
        • bibliography
        • bibliography - supplemental
        • credits
        • data policy
        • U.S. LTER Watershed Sites
        • history
        • links
        • web resources
    • Managing Arid and Semi-Arid Watersheds
      • about
      • basics
      • bibliography
      • bibliography - supplemental
      • credits
      • data policy
      • U.S. LTER Watershed Sites
      • history
      • links
      • web resources
    • National Stream Internet
      • Workshops and Presentations
      • NSI Hydrography Network
      • Databases of Stream Reach Descriptors
      • Databases of Stream Measurements
      • SSN Bibliography
    • NorWeST: Regional Database & Modeled Stream Temperature
      • Project Boundary
      • Processing Status
      • Data Downloads
        • Stream Temperature Database
        • Modeled Stream Temperatures
      • Interactive Map
      • Publications
        • Supporting Research
        • Science Briefings
        • Posters & Presentations
        • Blogs & Newsletters
      • Supporting Information
        • Reconditioned NHD Plus
        • Regional Climate Downscaling
        • Climate-Aquatics Blog
        • 2011 Climate-Aquatics Decision Support Workshop
      • Related Links
        • Cold-Water Climate Shield
        • SSN & STARS
        • Stream Temperature Monitoring & Modeling
        • U.S. Stream Flow Metric Dataset
      • Contacts & Contributors
    • Sediment Transport
      • Idaho & Nevada
        • Publications
        • FAQ & Contact Us
      • Colorado & Wyoming
        • Publications
        • FAQ & Contact Us
    • Spatial Statistical Modeling of Streams (SSN & STARS)
      • Frequently Asked Questions
      • Software & Data
      • GIS Layers
      • Publications & Presentations
      • Latest Releases
      • Authors & Contacts
      • Other Software
      • News
    • Stream Temperature Monitoring & Modeling
      • Protocols and Resources
      • Interactive Maps
      • Modeling
        • Air Temperature Model
        • Multiple Regression Model
        • Spatial Statistical Model
        • SSN & STARS
        • NorWeST
      • Resources
        • Climate Change Resource Center
        • Climate-Aquatics Blog
        • Climate-Aquatics Workshop
        • Temperature Data Macro
      • Publications
        • Publications & Presentations
        • Science Briefings
    • Understanding the diversity of Cottus in western North America
      • Current Contributions
      • Phylogeny and Maps
      • Publications and Posters
      • Contact
    • Valley Bottom Confinement
      • Download Valley Bottom Shapefiles
      • Download VCA Script & Toolbox
      • Publications
    • Water Erosion Prediction Project (WEPP)
      • Forest Management
        • Disturbed WEPP
        • Disturbed WEPP Batch
        • ERMiT
        • ERMiT Batch
        • WEPP FuME
        • Tahoe Basin Sediment Model
      • Road Erosion
        • WEPP: Road
        • WEPP: Road Batch
      • Fire Effects
        • Disturbed WEPP
        • Disturbed WEPP Batch
        • ERMiT
        • ERMiT Batch
        • WEPP FuME
      • WEPP Climate Parameter Files
        • Rock:Clime
      • Peak Flow Calculator
      • Additional WEPP Resources
    • U.S. Stream Flow Metric Dataset
      • Dataset Downloads
      • Publications
        • Macroscale Hydrologic Modeling
        • Comparison of VIC/MC1 Models to Observed Gage Data
        • Science Briefing
      • Contacts
        • Charlie Luce
        • Seth Wenger
      • Links
        • NHD Plus
        • University of Washington Climate Impacts Group
        • Trout Unlimited Science Page
        • Climate-Aquatics Blog
      • Related Websites
        • SSN & STARS
        • Reconditioned NHD Plus
        • NorWeST Stream Temperature
        • Stream Temperature Modeling & Monitoring
  • PUBLICATIONS
    • Search Publications (TreeSearch)
    • Recent W&W Publications
    • All Available W&W Publications
    • Publications by Project or Research Subject
      • Biogeochemistry
      • Environmental DNA
      • Climate Change
      • Engineering
      • Fire & Aquatic Ecosystems
      • Geomorphic Road Analysis & Inventory Package (GRAIP)
      • Glacier Lakes Ecosystem Experiments Site (GLEES)
      • Invasive Aquatic Species
      • NorWeST Stream Temperature Regional Database & Model
      • River Bathymetry Toolkit (RBT)
      • Sediment Transport
        • Idaho/Nevada
        • Colorado/Wyoming
      • Spatial Statistical Modeling of Stream Networks (SSN & STARS)
      • Stream Temperature Modeling & Monitoring
      • Threats Assessment for Western Riparian Ecosystems
    • Science Briefings
      • Search by Title
      • Search by Researcher
      • Search by Subject
    • General Technical Reports
      • Search by Title
      • Search by Researcher
      • Search by Subject
  • CONTACT US
    • Locations
      • Albuquerque Forestry Sciences Lab
      • Boise Aquatic Sciences Lab
      • Flagstaff Forestry Sciences Lab
      • Fort Collins Biogeochemistry Lab
      • Fort Collins Forestry Sciences Lab
      • Missoula Fire Sciences Lab
      • Moscow Forestry Sciences Lab
    • Employee Profiles
    • Jobs & Employment
    • Website Feedback
    search only W&W
Home    Projects, Tools, and Data


  Air temperature monitoring and modeling

Air Temperature Monitoring and Modeling

Surface air temperature variation is central to our understanding of climate and is a primary driver of a range or hydrologic and ecological processes. Climatic variation with terrain (“topoclimate”) can be quite large in regions of complex topography. The USFS has initiated an interagency effort to monitor surface air temperature variation in mountainous regions of the western US. Networks of inexpensive air temperature sensors have been deployed in forested areas across a range of topographic settings. This collaboration between the Rocky Mountain Research Station and USFS Region 1 fire management is funded for 3 years and will sample air temperatures at more than 2000 sites across the Northern Rockies.

  The Aquatic eDNAtlas Project - eDNA database for aquatic species

The Aquatic eDNAtlas Project

This website  provides information about: 1) the science behind eDNA sampling, 2) the recommended field protocol for eDNA sampling and the equipment loan program administered by the NGC, 3) a systematically-spaced sampling grid for all flowing waters of the U.S. in a downloadable format that includes unique database identifiers and geographic coordinates for all sampling sites, and 4) the results of eDNA sampling at those sites where project partners have agreed to share data.

  Biogeochemistry Lab in Colorado

Biogeochemistry Lab

The Fort Collins Biogeochemistry laboratory is a state of the art facility operated by the AWAE program. Equipped with cutting edge instrumentation and experienced staff members the biogeochem lab provides a wide range of analytical abilities for research pertaining to environmental chemistry.  Instrumentation and analysis methods are continually updated to remain at the forefront of modern science and to meet on-going needs of biogeochemical research projects pertaining to water quality, soil productivity, forest disturbances, soil and aquatic restoration, climate change and long term monitoring studies.

  Rangewide Bull Trout eDNA Project

The rangewide bull trout eDNA project

The bull trout is an ESA-listed species with a historical range that encompasses many waters across the Northwest. Though once abundant, bull trout have declined in many locations and are at risk from a changing climate, nonnative species, and habitat degradation. Informed conservation planning relies on sound and precise information about the distribution of bull trout in thousands of streams, but gathering this information is a daunting and expensive task. To overcome this problem, we have coupled 1) a range-wide, spatially precise model that predicts the location of natal habitats of bull trout with 2) a sampling template for every 8-digit hydrologic unit in the historical range of bull trout, based on the probability of detecting bull trout presence using environmental DNA (eDNA) sampling. On this project page, you can find bull trout eDNA sampling information and supporting science, information on participating in the bull trout eDNA survey, bull trout eDNA sample site locations, and the status of the bull trout eDNA survey.

 

Climate Shield Cold-Water Refuge Streams for Native Trout

Climate Shield Cold-Water Refuge Streams for Native Trout

Populations of many cold-water species are likely to decline this century with global warming, but declines will vary spatially and some populations will persist even under extreme climate change scenarios. Especially cold habitats could provide important refugia from both future environmental change and invasions by non-native species that prefer warmer waters. The Climate Shield website hosts geospatial data and related information that describes specific locations of cold-water refuge streams for native Cutthroat Trout and Bull Trout across the northwestern U.S. Forecasts about the locations of refugia could enable the protection of key watersheds, be used to rally support among multiple stakeholders, and provide a foundation for planning climate-smart conservation networks that improve the odds of preserving native trout populations through the 21st century.

  Cutthroat trout-rainbow trout hybridization - data downloads and maps

Cutthroat trout-rainbow trout hybridization

Knowing how environments might influence the degree and location of hybridization between these species represents a potentially powerful tool for managers. To address that need, we modeled how hybridization between westslope cutthroat trout and rainbow trout is influenced by stream characteristics that favor each species. On the Cutthroat trout-rainbow trout hybridization website, we describe that model, and provide high-resolution digital maps in user-friendly formats of the predictions of different levels of hybridization across the native range of westslope cutthroat trout in the Northern Rocky Mountains, representing both current conditions and those associated with warmer stream temperatures. Our goal is to help decision-makers gauge the potential for hybridization between cutthroat trout and rainbow trout when considering management strategies for conserving cutthroat trout.

  Fire and Aquatic Ecosystems science

Fish and Aquatic Ecosystems

The primary purpose of this web site is to ensure that land managers have access to the most current science findings and tools relevant to management of aquatic systems in fire prone landscapes. The complex interaction of wildland fire and aquatic systems has been the subject of two workshops hosted by the Boise Aquatic Sciences Lab. Access archives from the first workshop (held in 2002) and the most recent meeting in 2009.

  Fish and Cattle Grazing reports

Fish and cattle grazing Reports

Information on several breeds of fish, their common names, their legal status, distribution, breeding, habitat, major river drainages, status, trends, threats, diet and grazing impacts on the specific species.

  Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams

Geomorphic Road Analysis and Inventory Package (GRAIP)

GRAIP is designed to help land managers learn about the impacts of road systems on erosion and sediment delivery to streams. As the name implies, GRAIP couples analytical tools with an inventory process to build an approach to roads analysis that can be locally calibrated in a repeatable fashion and with minimal effort. The full scope of GRAIP includes methods to inventory roads and analyze the inventory for surface erosion, gully risk, landslide risk and stream crossing failure risks. Methods to measure road surface erosion from sample sites are also included.

  GRAIP_Lite - Geomophic Road Analysis and Inventory Package (GRAIP) tool for erosion and sediment delivery to streams

GRAIP_Lite

GRAIP_Lite uses the same principles as GRAIP to determine broad-scale road surface sediment risks over a much wider area very quickly, and is used as a tool to determine where the largest problems likely occur on a 6th code subwatershed scale.   If you are looking for a more general prioritization tool that can be applied over a broader area without the cost for intensive field data, then GRAIP_Lite may be a good choice.

  Integrating Forests, Fish, and Fire

IF3: Integrating Forests, Fish, and Fire

Integrating Forests, Fish, and Fire (IF3) is a Bayesian decision support model that uses information on forest vegetation, human alterations to terrestrial and aquatic habitat condition, and the potential for fire-related disturbance to predict post-fire population persistence for stream fish. The purpose of the model is to evaluate alternative vectors for maximizing the resilience to future fire activity of forest stands supporting sensitive stream fish, such as bull trout (Salvelinus confluentus).

 

Managing Arid and Semi-Arid Watersheds

The project page provides a plethora of information on experimental watersheds in Arizona, including historic flow data, GIS maps and general description.

  Understanding Sculpin DNA - environmental DNA and morphological species differences; A molecular taxonomy of Cottus

A molecular taxonomy of Cottus in western North America

Fishes of the genus Cottus –the sculpins—have long been a challenge for fish managers and ichthyologists in the West. They share streams, rivers, and lakes with trout and salmon, and depend on the same kinds of habitats with relatively cold, clean water. But because the morphological differences between species are subtle and seemingly geographically variable, it has been a challenge to catalog the diversity of species in western North America. To resolve this problem, we sought your help to build a regional collection of sculpin tissues, and used genetic sequences, species delimitation algorithms, and geography to delineate the number and distribution of species. This project site has links to maps, presentations, supplimentary materials.

  national forest climate change maps webpage

National forest climate change maps: Your guide to the future

The National Forest Climate Change Maps project was developed to meet the need of National Forest managers for information on projected climate changes at a scale relevant to decision making processes, including Forest Plans.  The maps use state-of-the-art science and are available for every National Forest in the contiguous United States with relevant data coverage.  Currently, the map sets include variables related to precipitation, air temperature, snow (including April 1 snow water equivalent (SWE), and snow residence time), and stream flow.

  National forest contributions to streamflow

National forest contributions to streamflow

Forested and mountainous locations, such as national forests, tend to receive more precipitation than adjacent non-forested or low-lying areas. However the precise contributions of national forest lands to regional streamflow volumes is largely unknown. New modeling work illustrates the importance of water yield from National Forest System land to water quantity and quality through visual and textual presentations of each forest’s contributions to regional streamflow.

  The National Stream Internet network, people, data, GIS, analysis, techniques

The National Stream Internet

The NSI is a network of people, data, and analytical techniques that interact synergistically to create information about streams. The NSI is needed because accurate, high-resolution status and trend information does not exist for most biological and water quality attributes across the 5.5 million stream kilometers in the United States. Without that information, prioritization of limited resources for conservation and management proceeds inefficiently. In recent decades, however, 100s of natural resource agencies have invested millions of dollars to collect stream datasets that contain massive amounts of untapped information.

  NorWeST Stream Temperature regional database and model

NorWeST Stream Temperature Regional Database and Model

The NorWeST webpage hosts stream temperature data and geospatial map outputs from a regional temperature model for the Northwest U.S. The temperature database was compiled from hundreds of biologists and hydrologists working for dozens of resource agencies and contains more than 45,000,000 hourly temperature recordings at more than 15,000 unique stream sites. These temperature data are being used with spatial statistical stream network models to develop an accurate and consistent set of climate scenarios for all streams.

  Sediment Transport Data for Idaho, Nevada, Wyoming, Colorado

Sediment Transport Data

Sediment transport through mountain rivers forms and maintains aquatic habitat (through physical processes such as erosion, bank undercutting, sandbar formation, aggradation, gullying, and plugging) and has important implications for water resource infrastructure. However, sediment transport cannot be understood without also considering the hydrology and geomorphology of an aquatic ecosystem. Research explores: 1) how sediment yields are likely to respond to climate change and wildfire; 2) the potential consequences for aquatic habitat and water resource infrastructure; and 3) prospects for mitigating sediment yields in forest basins. Data, publications, and resources include Idaho, Nevada, Colorado, and Wyoming.

  SnowEx - Improving airborne and ground-based measurements to determine the snow-water equivalent (SWE), or the amount of water held in snow, over different terrains.

SnowEx

This NASA-sponsored project will test a variety of sensors and techniques used to collect and improve airborne and ground-based measurements to determine the snow-water equivalent (SWE), or the amount of water held in snow, over different terrains.

  Stream Temperature Modeling and Monitoring

Stream Temperature Modeling and Monitoring

This web site provides resources to help those in the western U.S. organize temperature monitoring efforts, describes techniques for measuring stream temperatures, and describes several statistical models for predicting stream temperatures and thermally suitable fish habitats from temperature data. You will also find useful links to other stream temperature resources such as publications, videos, and presentations on topics relating to thermal regimes in streams. By accurately portraying and making available a comprehensive and updated set of stream temperature sites monitored by several agencies, we hope to facilitate data sharing and avoid redundancies as new monitoring sites are added to the regional network.

  Spatial Statistical Modeling on Stream netowrks - tools and GIS downloads

Tools for Spatial Statistical Modeling on Stream Networks

The purpose of the Spatial Tools for the Analysis of River Systems (STARS) toolset is to generate and format the data needed to fit spatial statistical models in R software. The STARS toolset makes use of the Landscape Network, a data structure used to efficiently navigate throughout a stream network. Specific tools have been included to 1) Pre-process the Landscape Network; 2) Calculate the hydrologic distances (with flow-direction preserved), the spatial additive function used to weight converging stream segments, and the covariates for all observed and prediction locations in the stream network; and 3) Export the topological, spatial, and attribute information in a format that can be efficiently stored, accessed, and analyzed in R. The site also houses GIS layers and sample data to get you started.

  Valley Bottom Confinement GIS tools

Valley Bottom Confinement

The Valley Confinement Algorithm (VCA) is a GIS based program that uses NHDPlus data to delineate unconfined valley bottoms. This webpage provides access to the VCA ArcGIS Toolbox script and documentation describing the program. The site includes the ArcGIS 10.x toolbox script, as well as publications and presentations and the General Technical Report (GTR) describing the VCA.

 

  Water Erosion Prediction Project (WEPP)

Water Erosion Prediction Project (WEPP)

FS WEPP is a set of interfaces designed to allow users to quickly evaluate erosion and sediment delivery potential from forest roads. The erosion rates and sediment delivery are predicted by the Water Erosion Prediction Project (WEPP) model, using input values for forest conditions developed by scientists at the Rocky Mountain Research Station.

Great Lakes WEPP Watershed Online GIS Interface

  Bull Trout Symposium - Bull Trout and Climate Change presentations

Western Division AFS - 2008 Bull Trout Symposium - Bull Trout and Climate Change

Bull trout (Salvelinus confluentus) are a threatened fish species with a highly fragmented distribution throughout the Pacific Northwest. Among the critical requirements for bull trout are a need for large, interconnected habitats of cold water. While the needs of bull trout for cold water and ongoing restoration actions are well known and being addressed, much uncertainty remains about the future security of bull trout and their habitats within the US due to environmental trends associated with climate change. The goal of this symposium is to provide an overview of bull trout, their relationship to climate, and to discus alternatives for modeling future habitat and population distributions.

  Western US Stream Flow Metric Dataset

Streamflow Metrics: A dataset of modeled flow metrics for streams in the contiguous U.S. for historical and future climate change scenarios

Climate change is projected to alter the flow regimes of streams and rivers, with consequences for physical processes, aquatic organisms, and water resource management. To study these hydrologic changes, we have developed a database of flow metrics for streams across much of the United States (extent shown in Figure 1 of the User Guide) under historical conditions and future climate change scenarios. These are based on daily simulations of the Variable Infiltration Capacity (VIC) macroscale hydrologic model from the the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive.

     
  Other Resources  
  air, water, and aquatic ecosystems program area publications, technical reports and reserach resources

AWAE Publications

  short science briefing papers on air, water, and aquatics research topics

AWAE One or Two-Page Briefing Papers

     
  Class in the creek Class in the Creek
  Resources for Kids and Teachers
     
   

 

    List of RMRS R&D tools on the FS R&D page
 

   
   

 
Home    Projects, Tools, and Data
 

Find W&W and follow us on your favorite social media site:

facebook
twitter
youtube
email


  |  RMRS Home  |   W&W Home  |   Disclaimers  |   Freedom of Information Act (FOIA)  |   Privacy Notice  |   Quality of Information  |   Print This Page  |